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FOREWORD

The Multisatellite Filter/Smoother system of computer programs was
developed by the Space and Surface Systems Division of NSWC in support of the
Defense Mapping Agency various geodetic a%plications of GPS and the Navy's
Strategic Systems Program Office/Applied Physics Laboratory SATRACK project.
The Blrmciﬁal software developers were D. Clark, K. Davis, E. Durling, M. Eward,
and H. Ball as members of the Physical Sciences Software Branch. This software is
part of the new OMNIS orbit computation system under development. I am grateful
to MCSI and, especially, Susan Bowen for helping in the production of this report.
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INTRODUCTION

The Global Positioning System (GPS) is a passive, all-weather, worldwide navi- f
gation system that utilizes ultrastable atomic frequency standards to provide navi- :
gation messages and si%als of the required accuracies. The Space and Surface

ystems Division of NSWC Las been tasked by the Defense Mapping Agency and the
Navy's Strategic Systems Program Office to develop estimation techniques for
high X accurate ephemeris and clock determination (afte:-the-fact) for geodetic and
the SATRACK applications, resrectively. For geodetic agglications, such as point
positioning and satellite-to-satellite tracking involving GPS, the user is interested
1n accurate ephemeris and clock information at all times and with minimal disconti-
nuities. For the SATRACK application (missile trackiniprimarily during powered
flight), the user (Applied Physics Laboratory/Johns Hopkins University) is inter-
ested in this information over a particular geographical area for a short time span.
The goal of this develcpment effort was tc produce common software that has the
flexibility to optimize the orbit and clock estimates as required and t‘ltzenerat.es the
re?luired products for these two primary applications. In addition, this software was
to have extensive diagnostics and be easily reconfigured and/or modified to be used
as a research and development tool for accuracy evaluations and other studies.

The result of this development effort is called the GPS Multisatellite Filter/
Smoother (MSF/S) system of programs. Smoothed range, correlated range differ-
ence, and two interferometric-type derived observations based on simultaneous
range observations can be processed. A Kalman filter followed by a smoother was
chosen as the estimation technique for severa! reasons. The unmodeled acceler-
ations acting on the satellites (due to modeling deficiences in the gravity field,
radiation pressure, and thermal radiation models, as well as control system induced
effects) and the random behavior of atomic clocks are best handled by stochastic
estimation techniques, i.e., Kalman filtering. Fixed-interval smoothing can be
accomplished because processing is after-the-fact; thus, estimates at a given time
can be based on both past and future data. A square root information filter/smoother
(SRIF/SRIS) formulation utilizing matrix triangularization techniques was selected
for this system primarily because of its numerical accuracy and stability. In addi-
tion, this smootgling rocedure requires that only inverses of upper triangular
matrices be computed, as opposed to inverses of full matrices-as is the case for most
covariance-related smoother implementations. Also, if smoothed covariance infor-
mation is not required, the upper triangular matriz to be inverted is only for a subset
of the parametei s in the selected implementation. These ideas will be expanded
upon in subsequent sections.

The multisatellite capability was adopted because it is the optimum way to
separate the satellite clock offsets (of interest to users) and the station clock offsets
(of no interest to users). This is because of the simultanecus tracking of a giveu sat-
ellite by two or more stations in conjunction with simultaneous tracking of several
satellites by each station. Intersatellite orbit and clock covariances are required for
the SATRACK project and are only available with simultaneous processing. Also,
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this allows the system of programs to accommodate doubly-differenced data types in-
volving two satellites and to eventually be expanded to accommodate the proposed
cross-link ranging (satellite-to-satellite tracking) data. In addition, the adoption of a
multisatellite capability affected the formulation of the Kalman filter process noise
incorporation dealing with minimizing array storage requirements, to maximize the
number of satellites that can be processed simultaneously.

The purpose of this report is to provide the assumptions and mathematical
details for the GPS MSF/S system of programs. First, the overall GPS data flow is
given to introduce the reader to the preliminary computations required before exe-
cuting the MSF/S. Then, the estimation concepts employed are discussed; followed
by the timeline definitions; and a detailed description of the adopted state equations,
underlying models, and resulting process noise covariance matrices reauire by the
Filter. Next, the observation equations and the corresponding partial derivatives of
the data with respect to the parameter set are given. Then, the overall Filter/
Smoother processing flow is provided to establish the groundwork for the detailed
descriptions of the filtering and smoothing algorithms, the generation of the solution
and diagnostics, and the propagation of trajectories. Derivations and other relevant
technical details are supplied in the appendices to enhance understanding the main
text.

GPS DATA FLOW

The possible observations are pseudorange and range difference derived from
integrated Doppler or phase measurements. Preprocessing of observations may be
required for various reasons. Smoothing of pseudorange measurements, accummu-
lation and differencing of integrated Doppler over longer intervals, elimination of
duplicate daty, and assi fnment of observation standard deviations and pass hum-
bers may be required. The pass-oriented data must be merged into a time-ordered
format, and time-ordered data ir. one format must be convcrted into another format.
Data from various sources must be merged for the time span of interest. The MSF/S
format c~tains the followin%information for each observation: time of observation,
observation value, standard deviation(s), editing flag, data type, integration interval
for range difference data, station number, satellite number, channel or tracker num-
ber, pass number, source of weather data, as well as temperature, pressure, and
relative humidity in order to make the tropospheric refraction correction. Figure 1
gives a simplified flow of the GPS data after the observations have been pre-
processed.

Reference trajectories covering the span of interest are required for both the
Corrector/Editor and MSF/S systems of programs. These trajectories are integrated
either in GPS or UTC time using initial conditiors from a previous fit or obtained
from the GPS Operational Control System. For the Corrector/Editor system in its
normal mode of operation, the only information required from the trajectories is
inertial position and velocity (obtained by numerical differentiation) as a function of
time ancr polar motion. However, for the MSF/S system the reference trajectories
and the corresponding Lagrangian interpolation procedures provide the following
additional information:
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INITIAL TRAJECTORY
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REFERENCE
TRAJECTORIES

PROPAGATED
TRAJECTORIES

TIME. MULTI
ORDERED CORRECTOR/ EDITED SATELLITE

OBSERVATIONS EDITOR OBSERVATIONS FILTER
SMOOTIER
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FIGURE 1. GPS DATA FLOW

1. Homogeneous variational equa‘ion solution for the epoch orbital elements,
i.e., partials of current time positicn and velocity with respect to epoch or-
bital elements needed to relate changes at epoch to all other times. (The
gavity field model on which the filtering is based is thus determined by

e integrator along with the inertial reference frame.)

2. Initial values for the radiation pressure model parameters and the body-
axis-to-inertial rotation matrix and body-axis radiation pressure accelera-
tions at the required times. (These quantities are required for the compu-
tation of certain partial derivatives associated with solving for stochastic
radiation pressure parameters and permit evaluation of the complex radia-
tion pressure force model only during the integration procedure.)

3. Partial derivatives required to solve for nonstochastic radiation pressure
parameters, thrusts, polar motion, and gravity field model coefficients.

The inain requirement on the reference trajectories is that they are within the
linear region of convergence relative to the true trajectory, since a linearized (not
extended) Kalman filter has been adopted. However, if a reference trajectory is not
within the linear region the Filter can be used in a batch emulation mode to obtain
an improved set of initial conditions for reintegration. Reference 1 contains a de-
tailed description of the reference trajectory integration procedures and the associ-
ated force models.

The Corrector/Editor system of programs has two purposes. The first purpose is
to correct the data to instantaneous geometric range (or range difference), plus clock
offsets, measurement noise, and residual unmodeled and random effects. This is
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accomplished by adjusting the measurements to account for time transinission
effects, the effect of the displacement of the antenna system’s electrical phase center
from the satellite’s center of gravity, tropospheric refraction effects, the periodic
component of the relativistic effect on the satellite clock, and the solid earth tide
effect on the station height. Range and range difference data can be processed by this
system of programs with corrections appropriate to each type and source of data
made. The second purpose is to edit the data. The Editor does polynomial fits to
residuals, formed by differencing a computed value based on the reference trajectory
and nominal clock information with the corrected observed value. Consistenc
checks of the after-fit residuals are used to identify bad points. By-products of this
editin? procedure are estimates of the nominal clocks for each satellite and station,
as well as the time of occurrence and approximate magnitude of any time or fre-

uency J'ump events that may be observed in the residuals. Reference 2 contains a
get.aile description of the Corrector/Editor system of programs.

Once the range data has been corrected and edited, another srog‘ram can he
used to search for simultaneous observations and form the derived interferometric
data types--differenced range and doubly-differenced range. Differenced range is
obtained by differercing ranges from two stations to the same satellite. This elimi-
nates the satellite clock from the observations. Doubly-differenced range is obtained
by differencingrtwo differenced ranges involving the same pair of stations but differ-
ent satellites. This also eliminates the station clocks from the observations.

In addition to the reference trajectories, edited observations (including obser-
vation sigmas and station coordinates), and nominal clock information (includin
events and offsets between the master or reference clock and GPS time), the MSF/S
sgst.em of programs requires various inputs including: overall program flow and
identifying information, quantities defining time spans for the fit and each data
t{)pe, lists of satellites and stations to be processed, data deletion criteria, minimum
observation sigmas for each data type, the parameter set and a priori statistics, and
information for SATRACK processing if required. Output products of the MSF/S
system of programs include: propagated trajectories, satellite clock offsets from GPS
time (both time and frequency), impreved initial conditions to initiate follow-on
processin?, plots of corrections and their corresponding sigmas, residual and signal-
to-noise plots, correlation coefficient matrices, SATRACK intersatellite and inter-
tir?e covariance matrices, updated station coordinates, and updated polar motion
information.

ESTIMATION CONCEPTS

The GPS MSF/S estimation procedure can be viewed as an adjustment of a
model to best fit, in a minimum mean-squared error sense, the available observa-
tions which are a function of that model. The possible observations are range, range
difference, differenced range, and doubly-differenced range--all involving tracking of
the satellites by stations on the surface of the Earth, The model consists of a trajec-
tory model, clock models for both the satellite and station clocks, and various other
parameters related to the measurements.

Since the ordinary differential equations describirg a satellite trajectory are
nonlinear and the Kalman filter equations assume a linear state model (and a linear

L
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measurement model), a linearization about a reference trajectory must be per-
formed. In addition, since atomic clocks sometimes exhibit anomalous steg changes
in time and/or frequancy or may be adjusted deliberately, a nominal clock including
approximate values for all step changes is also required, so the stochastic clock
models do not have to accomodate large jumps. Lincarization means that the states
of the Kalman filter are actually corrections to the nominal model parameters and
that the measurements are processed as residuals. Therefore, partial derivatives are
re%uiud that relate the states at one time to another time (state transition matrices)
and that relate the measurements to the states (measurement matrices). All partial
derivatives are evaluated based on the reference trajectory and the nominal param-
eter values. There is no relinearization of the measurement model relative to the
estimated states. The A notation is used throughout this report to indicate that
corrections to nominal model parameters are actually being estimated.

Itis important to realize that a Kalman filter is a combination of a parameter
estimation technique and a set of equations that define how the state and its associ-
ated covariance at one moment in time, t,, are related to the same quantities at
another time, ¢,,,. The general form of the stochastic state equations (in discrete
terms) is given by:

AIJ+) = QJA!:, + GU_,‘ (1)
where Ax; = stateatt,

¢ = 8{"" 1, tj) = nonsingular transition matrix relating the state at ¢, to
e state at v

w; = vector of white process noise terms with nonsingular covariance
matrix Q,, dim w sdim Ax

and G = matrixof cnes and zeroes required to make dim Gw = dimn Ax.
This general form is assumed when describing the processing steps in a standard
Kalman filter. The specialized form of the state equations adopted in the MSF/S
system, their underl ‘n%models, and the corresponding Q matrices are described in
¢ STATE EQUATIONS section.

The discrete form of the linear measurement model is given by:

7, = AAx;+v, (2)
where z; = measurement vectoratt,
A, = measurement matrix at
and v, = measurement noise vector at ¢,.

Itis essumed that the observations have been whitened and decorrelated, so the
measurement noise covariance matrix is the identity matrix,i.e. P, = I. Itisalso
assumed that the process noise, w, and measurement noise, v, are uncorrelated and
that the state estimate, Ax,, and its ussociated covariance matrix, By, are given at t,.
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Smoothing

Propagation

Measurement Update \/-\
l /4 1 1 1 rya 4
r 7/ \ — LB 7/ 1
to t, t, ty

{¢,} = mini-batch times (] = mini-batch intervals At=t,,;—t,

FIGURE 2. SIMPLIFIED TIMELINE DEFINITION

Figure 2 gives a simplified timeline definition. A complete timeline definition

is given in the next section. For a standard linear Kalman filter the processin
starts by initialization of the state and its associated covariance matrix at o, the
epoch of the fit span, and steps forward in time. Assume for illustration purposes

at observations only occur at the times { ¢, }. In the following equations ~ indicates a
predicted cRxantity, * indicates a filtered quantity, and * indicates a smoothed
gantity. measurement update isdone at t, by forming the predicted residuals and

eir covariance matrix, computing the gain matrix K,, and using these quantities
along with the measurement and measurement matrix to update the estimates of the
state and the covariance matrix.

Ax, = Ax, + K;(z, — A/Ax) (3)
P, = (I-K,A)P, (@)
where K, = BAJ(AB A +1) (5)

z,— AjAx; is the predicted residual vector and

AP; A'+1 isthe predicted residual covariance matrix.

The next step is to propagate the state and the covariance matrix totime t,, ;. The
state propagation uses the state transition n.atrix ¢, and assumes that the process
noise term w; is zero. The covariance matrix is propagated by doing a deterministic
mapping using the ¢, matrix and then adding in Q,, the state or process noise covar-
iance matrix. This Q matrix is the only difference between a Kalman filter and a
sequentially implemented batch weighted least squares estimator.

Ax,, = ¢,Ax (6)
Py = 4’1514’1'* GQJG’ (7
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The measureinent update/propagate pair of operations is continued until a measure-
ment update has been done at ty.

Smoothing is then accomplished by recursively computing state an. covariance
estimates backwards, one step at a time, using the Rauch-Tung-Striebel (RTS) equa-
tions. Smoothed state estimates at t; are the filter estimates, plus a smoother gain
matrix multiplied times the difference of the smoothed and predicted statesat t;. ;.
The gain matrix is a function of the filtered covariance estimate at t;, the predicted
covariance estimate at t,, ;, and the state transition matrix ¢;. The smoothed
covariance estimate is the filtered estimate, plus a term that is a function of the
difference of smoothed and predicted covariance estimates at t;,; and the gain
matrix C;.

Ax; = Ax, + C(Axy; — Ax)4 1) (8)
P, = B+ C(P}s—By)) C (9)
where c, = B,¢B) (10)

This recursive process is continued until t, is reached. Reference 3 containsan
excellent introduction to linear Kalman filtering and smoothing.

Kalman filters can easily be restarted at any time in the middle of the fit span.
Assuming that the filter was previously stopped after p. -~agetion from t,.; to t,
restarting the filter simply consists of initializing the st.  and covariance matrix
estimates with their predicted vaiues at t, and then doing a measurement update at
te. This procedure has been adopted in the MSF/S system.

In the case of GPS it is necessary to use the mini-batch concept, because not all
observations lie exactly at the ¢, times and reducing the number of steps required
increases the efficiency of the computations. In the mini-batch concept all observa-
At At
PN
assumes that the process noise contribution to state uncertainties can be ignored
over much shorter periods than the time constants of the stochastic processes. This
means that the state noise covariance matrix Q; is only added into the covariance
matrix estimate when propagating from t; to t;, ;. This essentially averages out the
random effects over the interval chosen, which primarily affects the clock estimates
for the intervals used for GPS (<1 hr). Another effect is that solutions are only
available at the mini-batch steps. However, that part of the state équations
involving orbit-related parameters was chosen so that deterministic propagation of
the trajectory corrections between t;and ¢, ,; is exact.

tions in the interval ( t, — ] are processed in a batch mode. This

This approach also allows the mini-batch step to be changed in the middle of
the fit span. This technique was adopted for the SATRACK application of the MSF/S
system. Since this application requires optimum and dense estimates only during a
subspan of the entire fit span, a reduced mini-batch step size span is defined. The
concepts given above apply, except At is reduced to a smaller value. The transition
regions are handled to ensure no observation is processed twice. This technique is
also useful for looking in detail at a particular time span to locate precisely when an
anomaly occurred.
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The square root information implementation of the estimation equations was
selected for the MSF/S system. This implementation is mathematically equivalent
to the classical Kalman filter/RTS smoother approach. A square root implementa-
tion was selected because of its characteristic accuracy and stability. Accuracy
involves susceptibility to roundoff errors; stability involves accumulated roundoff
errors not causing the algorithm to diverge. These are common problems when
using the classical Kalman filter equations with large parameter and observation
sets. The information form (synonymous with normal equations and opgosite to the
covariance form) was selected because: primary interest is in the smoothed results
(in this implementation, filter state and covariance estimates never need io be
computed); the smoother equations require the inverse of only an upper triangular
matrix (of reduced size if covariance information is not required), instead of a full
matrix (as in the RTS formulation); and the observations are assumed to already be
edited. Editing can be done in a Kalman filter by comparing the predicted residual
to the square root of its variance. However, these quantities are never computed
explicitly in the information form. In fact, no predicted states and covariances are
normally computed in this implementation.

The square root information filter/smoother (SRIF/S) is based on the equivalent
concepts of a data equation and an information array as follows:

Data equation = Information array
z = RAx+ v (R z) 11)

where Ax = states to be estimated
R = nonsingular square matrix
v = zero-mean noise with unity (identity matrix) covariance
z = right-hand side of linear equations

Every data equation corresponds to an estimated state(Ax)-covariance (P) pair, i.e.,

Ax = Rz and P= R'RT (12)

The information matrix (normal matrix) is P'= R'R. Therefore, R'is the square root
of the information matriz--the origin of the name of this implementation. Data
equations are not unique because if T is an orthogonal matrix

Tz =TRAx + Tv (13)

where Tvhas unity covariance and

Ax = {TR)'Tz= R'T'Tz=R'z (14)
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Therefore, the transformed equations have the unity covariance noise term and the
same solution. These results can be extendza to the case where R has been augmen-
ted by additional rows representing nev' observations. In the SRIF/S method, House-
holder orthogonal transformations are used to partially or totally trian%'ularize
certain information arrays. Solutions, therefore, are always computed from an
upper triangular set of linear equations. The Householder transtormations are not
computed explicitly, only the results of applying the transformations are needed.
The details of applying these transforinations are given in the FILTER ALGO-
RITHM section. An excellent description of the square root information concepts
and properties of the Householder transformations, on which the MSF/S
development was based, is in Reference 4.

The parameter set selected for the MSF/S system can be divided into three
categories:

1. Stochastic parameters (1abelled p parameters)
a. Orbit-related
b. Measurement-related

2. Time-varying but nonstochastic parameters (labelled x parameters)

3. Bias parameters (labelled y parameters)
a. Station-related
b. Orbit-related

All parameters are arc parameters, i.e., there are no pass parameters. This grouping
results in some simplification of the SRIF/S algorithms. Since all p parameters must
be present twice in the propagation and array smoothing step arrays, not allowing
all parameters to be stochastic results in smaller arrays. Also, the y parameters can
be treated somewhat separately, resulting in additional array storage reduction. In
addition, the Q matrix is only required for the p parameters.

Both the orbital element states and the clock states are treated as pseudoepoch
state parameters. This means they are epoch state corrections that would have
occurred had the process noise been zero. These can then be readily mapped to cur-
rent state, using the standard state transition matrices. This definition was prima-
rily adopted for two reasons: (1) to use the partial derivatives of position and velocity
with respect to orbital elements generated in the integrator, as tﬁey would be used in
a standard batch fit when forming the measurement matrices and (2) to reduce the
clock model to a polynominal in time, with the fit epoch as the reference point if its
process noise terms were zero. This simplifies the state equations and keeps the
observation equations identical to those used for batch least squares.

Another concept employed in the MSF/S system development was to solve for a
given parameter set using one set of observations, and then, use these solutionsin
processing another set of observations. The two specific parameter sets chosen were
the orbit-related parameters and the satellite clock parameters. The orbi¢ solution
can be incorporated by using the propagated trajectories from a previous fit and not
solving for any orbit-related parameters. The satellite clock solutions can be incor-

orated by using the total satellite clock offsets from a previous fit and not solving

or satellite clock parameters. These two methods used together would allow sta-
tions, for which observations may or may not have been included in the previous fit,
to be positioned with fixed orbits and satellite clocks as an evaluation procedure.
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TIMELINE DEFINITIONS

Figure 3 gives a detailed diagram of the relationships of all the time-related
quartities to be referred to in the rest of this report. All times are either GPS or UTC
times.

—— A~ ———%——3 / A
T, t. to t

ti+y
At AtRed
—
| lIIT ITJII? |7/|7/|

FIGURE 3. DETAILED TIMELINE DEFINITION

ty = starttime of fit span }

must be trajectory timelines
ty = endtime of fit span Aectory
{ti} = mini-batch times

At = tj;;—t;= mini-batch time step (integer multiple of trajectory
time step)

(] = mini-batch measurement limits

To = trajectory epoch (may be different for each satellite), To<t,
Tg = end time ftrajectory, Tg2ty

AT = trajectory time step

tc. = clock epoch (may be different for each satellite and each station
and may be before or after ty)

ts®ed = start time of reduced mini-batch step span (primarily for
SATRACK), tg®¢ = t, + integer x At

tgf*d = end time of reduced mini-batch step span,
tRed = tgRed + integer x At
Atked = reduced mini-batch time step,
Atted = At /integer, AtRed = integer x AT
{T;}i=123 = timesfor SATRACK covariance information
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In addition each data type can be processed over a subspan of the fit span with the
default being the entire fit span.

STATE EQUATIONS

The stochastic state equations in discrete form define the relationship between
the states at tjand t;, ; i.e., the solutions that are determined by the Filter or
Smoother must satisfy these eguat.ions. The general form of these equations was
given in equation (1) in the ESTIMATION CONCEPTS section. A specialized
orm of these equations was selectad for the MSF/S system to ensure efficient
handling of the multisatellite capability and maximum utilization of available
partial derivatives and other pre-computed quantities from the integrator. These
equations are given by:

Ap M 0 0 Ap w;
Az |={ Vv, I 0 Ax |+ 0 (15)
Ay 0 0 I Ay 0

j Jj

J+1
where p, x, and y refer to categories of parameters.

Ap = stochastic parameter states—only states being driven by white noise

Ax = time-varying but nonstochastic parameter states
Ay = bias parameter states
w, = white noise vector with covariance matrix Q;.

The matrix involving M, V,, and the two identity matrices is the state transition |
matrix. The M matrix relates the p parameter states at t;to t; ;. The V, matrix |
relates the p parameter states at ¢; to the x parameter states at t;, ;. The p param- :
eters are divided into two subcategories--orbit-related and measurement-related. ':
The orbit-related p parameters are radiation pressure (Kz) and gravitational accele- i
rations (G). The measurement-related p parameters are tropospheric refraction (Cg), :
satellite clock (Cgy), and station clock (Cys). The only x parameters are the pseudo-

epoch orbital elements (e). In addition, the y parameters are divided into two

subcategories also--station-related and orbit-related. The only station-related y

parameters are station coordinates (S). The orbit-related y parameters are radiation

pressure (RP), thrust (T), poia. ™otion (PM), and gravity coefficients (GC). Polar

motion is under the orbit-related category, instead of the station-related category,

because the partial derivatives of satellite position with respect to polar motion can

be nonzero. Parameters are present for either all satellites or all stations, depending

on the specific parameter, except for thrusts that are only present for the appropriate

satellites and polar motion and gravity coefficients, which are common to aﬁ satel-

lites and are present once. Appendix A describes the assumptions and definitions

made in adopting the specialized form of the state equations for the orbit-related

parameters.

11
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The state transition matrix M in equation (156) has the following block diagonal

structure:
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sparse and has the following structure, where each ¢ submatrix

is of dfmension 6X3:

The V, matrix is also
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The Q matrix corresponding to the p parameters is also sparse and has the following
block diagonal structure:

QKR1§ O § § i §
----- *, ! : : :
o b1 0 10 ¢ 0 10
:QKRNst E E 5
(e, | o | § §
0 | S0 i 0 {0
: 0 t Qay | E 5
R 01T [
= \ VTR \ (18)
¢ 0 { 0 ;%4 0 {0 |
' ' [ '
-------------- R e R
§ % 0
0 | 0 {0 [0
E E E 0 npcsvhs\:
------------- T T S e
5 5 5 Qusy 0

The Filter algorithm does not directly use the Q matrix; but rather, uses the square

root of the inverse of the Q matrix R,,i.e., Q = R, RJ. R, has the same block
diagonal structure as Q except that each block is upper triangular.

The parameters are detailed below. It is assumed that the values solved for are
corrections to the nominal values for all parameters. Included in the description of
each parameter are the models assumed and a definition of the submatrices of M, V,,,
and Q, if applicable. Also, units are 'given for each parameter. The x parameters are
described first, so the submatrices of V,, can be defined for the p parameters as they
are described. Several expressions involve At and must be re-evaluated for the
reduced mini-batch span processing.

14
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TIME-VARYING NONSTOCHASTIC STATES

The only x parameters are the pseudoepoch orbital elements at the trajectory
epoch represented by e. Each trajectory can have a different epoch; as long as it is
before the fit epoch. These orbital elements are defined as follows:

a = semi-major axis (km)
esin® = eccentricity X sine (argument of perigee) (unitless)
ecos w = eccentricity X cosine (argument of perigee) (unitless)
I = inclination (radians)
M+® = mean anomaly + argument of perigee {radians)
Q = right ascension of the ascending node (radians).
The inertial position ry and velocity r, can alternatively be the x parameters, if
gartials with respect to these parameters are on the trajectory for any given satellite.
he MSF/S system of programs is designed so that it does not matter which of these

two rarameter sets is chosen for a given satellite. Throughout the rest of this report
e will be used to signify either set of orbit parameters. No direct process noise is
included on the ¢ parameters, nevertheless, they are smoothable as 8 result of being
dynamu;allg related (tarough the vV, matrix) to the Kz and G parameters, which are
stochastic. Because of the pseudoepoch state formulation of the state equations (see
Appendix A), the state transition matrix for these states is the identity matrix.
STOCHASTIC STATES

As mentioned above, the p parameters can be divided into two subcategories--
orbit-related and measurement-related. Since all x parameters are orbit param-
eters, ordering the orbit-related p parameters first results in the v, matrix being of
the form given in equation (17).
Orbit-Related Stochastic States

Radiation Pressure

The 3 radiation pressure parameters, Kg , are

KR, radiation pressure scale (unitless, .01 =constant acceleration
of 10'2 km/sec? in satellite-sun direction)

Kg, | = | y-axisacceleration (10''? km/sec?)

KR, angle between satellite x and y axes (radians, usually constrained
to 90 deg since ii is not easily observed).

A

15




Nominal values for these parameters are those used in the integrator. The time
history of the corrections to each of these parameters is modeled as a current state
first-order Gauss-Markov process (see Appendix B). This results in the 3 X3 portion
of the state transition matrix M being given by

At

where e Ty, reduces to 1 fortk, ==, i.e., for & random walk process or bias. The
process noise covariance matrix for these states is a diagonal matrix with each

element given by

QK = qKR‘ 2

Rl.l

where A, = spectral density of the white noise term = i Oy

steady-state sigma of the process. These si
nal of the R, matrix for

eters. Each dia
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e‘f,?,“ 0 0

(19) -

(20)

) 2At
l1-e 1, i=1,23

L

2 o3 ando, isthe i
1] i

R;
as have the same units as the param-
ese states is the square root of the

inverse of each diagonal of the Qx, matrix. For a random walk process the spectral
density must be directly input. This element of the process noise covariance matrix
expression reduces to , At for a random walk process and 0 for a bias, in which case

the diagonal of R, is set to a computational :nfinity. The 6 X3 portion of the v,
matrix corresponding to Ky is given by

ar ()
aKRg(t)
ar (1)
aK;, (t;)

¢, = ¥l -

where ¢, (t;+;) = partials of position and velociiy at time ¢, ,; with respect to epoch
orbital elements obtained by interpolation from the trajectory.

Approximations nsing second order Taylor series expansions are used to obtain the

partials of position and velocity at “lm:e t;; with respect to radiation 'lPressure . L
parameters at t;. (This epproximaticn is discussed in Appendix C.) These partials !
are given by

or(t.. ) _  At2  ar(t) .

ER : t 5 2 dKp (ij) (22)

ar(t,,) _ ar (t) At? aF(t) (23)

dKgr : tj; = A oKp tj) 2 dKg (tJ) an

16
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1
- t;n' o o
where B, = R .t.‘; 0 (24)
Ky
1
0 0 -
Tx

Ry
= 0 for a random walk or bias

a;—Kg,10" shape cos Kr, 10" shape cos Kp, -Kg,10""* shape sin Kg,

KR,
ar(t)) .
= S R, 0 10 shape sin Kp, Kgp, 10" shape cos Kg, (25)
R (t)) a
L 3
—_ 0 0
KR,

a = inertial acceleration at t, due to radiation pressure in the body-axes
directions obtained from the trajectory

R, = matrix required to transform1 between the body-axis and inertial
Cartesian reference systems ubtained from the trajectory at ¢;

Kz = nominal radiation pressure parameter values from the trajectory

shape = fraction of the sun's disk unobstructed by any eclipsing body (Earth,
Moon, or both) obtained from the trajectory at ¢;

The effects of changes in @ on Ky are ignored because they are negligible. Kz parame-
ters cannot be present without ¢ parameters, The partials of radiation pressure
acceleration with respect to K will be 0 if t, lies in the umbra region of the eclipse,
even though some observations in the corresponding mini-batch interval may lie
outside of the eclipse period. This form of inismodeling is not a problem when using
these parameters in their intended stochastic manner.

Gravita.ional Accelerations

The 3 gravitation al acceleration parameters, G, are the radial, along-track, and
cross-track C) accelerations in km/sec?. They are called this because the primary
error they are meant to absorb is Fravity field model error. These parameters are
sometimes referred to as unmodeled accelerations. The nominal value of each of
these parameters is assumed to be zero. The time history of the corrections to each of
these parameters is modeled as a current state first-order Gauss-Markov process (see
A.ppenl;lix B). This results in the 3 X3 portion of the state transition matrix M being
given by

17
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At
¢ T, 0 0
" _At
= 0 e T 0
At (26)
0 0 ¢ Y

At
wheree ~ i reducesto 1for; = «,i.e., for a random walk process or bias. The

process noise covariance matrix for these states is a diagonal matrix with each
element given by

- 24t
Qq, = qc, 2—"* -e 1g i=123 27

where q;, = spectral density of the white noise term = ; 0%, and o, is the steady-

state sigma of the process. These sigmas have the same units as the parameters.
Each diagonal of the R, matrix for these states is the square root of the inverse of
each diagonal of the Q; matrix. For a random walk process the spectral density must
be directly input. The process noise covariance matrix expression reduces to qg At

for a random walk process and O for a bias, in which case the diagonal of R, is set to a
computational infinity. The 6 X3 portion of the V, matrix correspending to G is given

by

ar(ty#l)
aG (t)
= & J)
¢G ¢¢(tj+l) a'1'“,_‘,') (28)
aG (!j)

where ¢, (t;,;) = partials of position and velocity at time t;,, with respect to epoch
orbital elements obtained by interpolating off the trajectory.

Approximations using second order Taylor series expansions are used to obtain the
partials of position and velocity at time t,,, with respect to gravitational accelera-
tion parameters at t;. (This approximation is discussed in Appendix C.) These
partials are given by

ar(tye) _ A8 8F(t) (29)
aG (1) 2 3C(t)

or(t,+1) = At ar (t;) . At ar(t) B, (30)
8G(t,) aG(t) 2 aG(t)

18
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"1, 0 0
h B; = 1
where G 0 - %, 0 (81)
1
\ 0 0 7Y
= 0 for a random walk or bias
an(t)) =G PXV ; Fx§> (32)
aG(t)) IFx W Ir x v

= matrix required to transform between the RAC and
inertial Cartesian reference frames at t;, where *
denotes a unit vector

The effects of changes in e on G are ignored because they are negligible. G
parameters cannot be present without ¢ parameters.

Measurementi-Related Stochastic States
Tropospheric Refraction

The tropospheric refraction parameter, Cg, is the zenith tropospheric refraction
parameter in km. The correction to this parameter is related to other elevations by
a factor of 1/sin E. The time histpﬁ of the correction to this parameter is modeled as
a current state first-order Gauss-Markov process (see Appendix B). This resultsin
the 1 X 1 portion of the state transition matrix M being given by

At
Mc, = e~ Qn (83)
At
where e ~ 3¢, reduces to 1 for vc, = =, i.e., for a random walk process or bias. The
process noise covariance matrix for this state consists of a single element given by

&

e
QC. = qcn ?‘ (1—. tc“ ) (34)

where g¢, = spectral density of the white noise term = % d’c,, and ac, is the

steady-state sigma of the process. This sigma has the same unit as the parameter.
The R, matrix for this state is the square root of the inverse of Qc,. For a random
walk process the spectral density must be directly input. The process noise covari-
ance matrix expression reduces to qc,At for a random walk process and 0 for a bias,
in which case R, is set to a computational infinity.
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Satellite and Station Clocks

The clock models for the satellite and station clocks are given below.
Appendix D discusses the models for the satellite and station clocks in more detail
than given here end describes the ulaﬁonmjﬁ‘htwun the clock model spectral
density noise terms and the Allan variance. The frequency offset term in these
models is not the instantaneous frequency offset, since it does not contain the white
frequency noise component. This component is only observable by its integrated
effect on the time offsat. These clock models reduce to polynomials referenced to the
fit epoch when all the process noise terms are zero.

The satellite clock parameters, Cgy, are

/8% frequency drift (ppm/sec)
Csy =| Ai | =| frequency offset (ppm)
Ay time offset (nsec)

The nominal values for these parameters are described in the next section and are
based on initial polynomials and step changes. The clock model is implemented in a
pseudoepoch state form which resultsin the portion of the state transition matrix
corresponding to these states being an identity matrix, i.e.,

100
Mc, = 010 (85)
001

The state noise covariance matrix for this set of states is given by

At A Ae
Q Q 5 Q 3
) Av At At Av : : .
q' = ¢'c$y Q- Q- + Q2At U= t @ &gv = Qésvocsv¢gsv (36)
Csv 2 3 8 2

At At At At At
U— Q— tQ— Q= +Q2-3— + qyAt

8 8 2 20
1 0
where s, = | Yri-to 1 0 37)
(1=t
'J+2, —o‘ t14.) —to 1
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{a:} -, .5 = white noise spectral density values in units of (ppm/sec)? /sec,
(ppm)?*/sec, and (psec)? /sec; and ¢, —t, is in seconds.

The Filter actually requires q,i = @&, dcy,- To get this matrix Qc,, is factored into

stv Rcg, using lower triangul‘a;‘Cholesky decomposition (see Appendix E). Then,
Rcg, dcg, is no longer upper triangular and must be upper triangularized before
bemf used in the propagation step for comgutational simplifications. If some of the
q; values are zero, special processing must be done to ensure that Qc,, is nonsingular.
If q;, = 0 and qg, q3 or both = 0, no change is necessary. If q; =- 0, Q, ; s set to =0. Ifq;
=q2=0,Q22issetto =0. Ifq; = q2 = q3 = 0,Q3zis set to =¢. If only processing
range difference data, each g;is set to =0. However, the a priori sigmas on the

arameters should not be set to = 0. Because the time offset state is basically the
integral of the frequency offset state, constraining the time offset also constrains the
frequency offset, which is not desired.

For certain clock events the Q¢,, matrix is changed for the mini-batch step
propagation that contains the event and then changed back to its original values.
This is used to account for the uncertainty in the clock event input offsets.

For a C-field adjust, Rc,, replaces R¢,,where

' — l-}
Res, = Qcgy (38)
0 0 0
and [ , 2
n Qcsy = Qs +| 0 OALC_ﬁeld 0 39
0 0 0

OAi(. 1418 Input in parts in 10" and converted to ppm before use. Z-count adjusts are
assumed to be exact, so there is no process noise adjustment associated with this
event. For a clock reinitialization event, Rz, replaces Rcsv ,where

1

—m 0 0
UAto
1
w oo 0 —_— 0 (40)
RCSV - OAl.o
0 0 1
oAto

and each sigma is the a priori sigma used in the Filter initialization step. Fora

frequency change event, R¢,, replaces R¢,,, where

" m -4

R¢,, = Qc,, (41)
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Oz't'fc 0 0
and QCs, = Qg t+ 0 OZifc 0
2
0 0 OA%

(42)

where each input sigma is converted to the proper units before use.

The station clock parameters, Cysg, are

Ay frequency offset (ppm)
Cus = =1 .
Ay time offset (psec)

This model isidentical to the satellite clock model, except the frequency drift state is
absent. The nominal values are also based on an initial polynomial and step
changes. The model is implemented in a pseudoepoch state form, which resultsin
the portion of state transition matrix corresponding to these states being an identity

. matrix, i.e.,
1 0
e - < > (43)
Cus
0 1

The state noise covariance matrix for this set of states is given by

At?
q:At qQ —
2
Qg,, = Peus Bh = Qs Qus Pl (44)
At At
a— q— + qAt
2 3
where do.. = ( 1 0) (45)
MS
tivr1 -ty 1

{a},_,, = white noise spectral densities in units of (ppm)*/sec and (psec)*/sec; and
tj+1—toisin seconds

The Filter actually requires Q}fCu = qus dc, - To get this matrix Qé‘,s is first
factored into Rc < Rc,; using lower triangular Cholesky decomposition (see
Appendix E). Then, Cus PCusiS DO longer upper triangular and must be upper

triangularized before being used in the propagation step for computational simpli-
fications. If some of the g; values are zero, special processing must be done to ensure
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that Qc,, is nonsingular. Ifq; = 0,Q,, isset to =0. Ifin addition q; = 0, Q22 is set to
=0. If only processing renge difference data, each q. is set to =0. However, the

a priori sigmas on the parameters should not be set to =0. This is because the time
offset state is basically the integral of the frequency offset state. Constraining the
time offset also constrains the frequency offset, which is not desired. For the selected
master station the q; values are set to =0.

For certain clock events, the Q¢, matrix is changed for the mini-batch step
ropagation that contains the event and then changed back to its original values.
his is used to account for the uncertainty in the clock event input offsets. For a

clock reinitialization,Rg,  replaces Rc, ., Where

1

— 0
G,.
pe = | %A (46)
Cus 1
0 -
oAlo

and each sigma is the a priori sigma used in the Filter initialization. This is not done
for a master station clock reinitialization, which is intended to accomodate GPS time
steering. For a frequency change event, R¢,  replaces R¢, ., where

" ll.‘ 4
Reys = QCys . 47
2
" OAifc 0
and Wus =Qus T | (48)
Alﬁ_,

where each input sigma is converted to the proper units before use. For a master sta-
tion switch event, the Rc, matrix for the station that is no longer the master station
is replaced by

1 0
o *
" — Ato : 49
Re,s = 1 (49)
0
oAta

for the first propagation step for which t;,; > tyss. Then, the matrix is reset to the
Rc, . values originally computed from input and saved (before it was replaced by a
matrix based on qi's set to =0) for propagation from t;,, to t;+ 2 and all subsequent
steps. The master station Qc, . matrix (essentially a null matrix) is then used from
t,to t;4+; and all subsequent propagation steps for the new master station parame-
ters. No change in the process noise is required for a station time change event, since
it is assumed to be exact.
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BIAS STATES

As previously mentioned, the y parameters are divided into two subcategories-
station-related and orbit-related. All orbit-related y parameters require partial
derivatives from the trajectories except polar motion, in which case partials are
present only if the geopotential expansion axis is not the instantaneous spin axis or
the Celestial Ephemeris Pole.

Station-Related Bias States

Station Coordinates

The corrections to station coordinates, AS, are defined in a local-vertical
reference frame as follows:

AE east component
AS =| AN } = north component (km)
Av vertical component
The nominal station coordinates are input in terms of longitude, latitude, and height
referenced to a specified ellipsoid. The state transition matrix for these states is the

identity matrix.

Orbit-Related Bias States

This category of parameter is included so constant force model parameters
affecting the orbit can be solved for. All of these parameter sets have identity state
transition matrices; and becausa of the pseudoepoch orbital element state definition,
they result in no terms that reiate changes in e to changes in these parameters. Par-
tial derivatives are only required in forming the measuremenrt condition equations
and are obtained by interpolating off the trajectory. Four parameter sets fall in this
category.

Radiation Pressure

The 3 radiation pressure parameters, RP, are

RP, radiation pressure scale (unitless)

RP; | = | y-axisacceleration (10'* km/sec?)

RP; angle between the x and y axes (radians are usuall
\constrained to 90 deg, since it is not easily observed) /

These parameters are present for every satellite, if selected, and are identical to the
stochastic radiation pressure parameters except the corrections are modeled as epoch
state constants. The stochastic parameter states can be configured to emulate cur-
rent state constants. However, this method is not recommended because of the
partial derivative approximations made and the fact that the smoothing procedure
would have to be completed to obtain the orbit solution at each timeline. The RP
parameters should be used in two cases: to emulate a batch orbit fit using the Filter
or to estimate constants along with their stochastic counterparts (since the latter
states are assumed to be of zero mean).
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Thrust

The thrust parameters, T, are

T, first component
T, = | second component (km/sec?)
T3 third component

Thrusts can be modeled in the inte‘grator in one of three referencc frames-the body-
axis frame, the RAC frame, or the RVC frame (see Reference 1). Thrust parameters
are only present for specific satellites, as required. and their nominal values are
obtained from the trajectories.

Polar Motion

The polar motion parameters, PM, are

P pole component along Greenwich meridian (radians)

q = pole component along meridian 90 deg west of
Greenwich (radians)

At rate of change of UT1-UTC (sec/sec)

The corrections to these parameters are modeled as constants over the entire fit span
with the At term reference time being the fit epoch. These states are common to all
satellites and stations.

Gravity Coefficients

The gravity coefficient parameters, GC, are selected gravity field model
coefficients (unitless). These smrameters are common to all satellites and the
nominal values are tnuse used by the integrator.

When the orbit-related parameters are viewed together, several comments
applﬂ. With only one set of orbit-related stochasti¢ Karameter states and pseudo-
epoch orbital element states being solved for, the orbit model is essentially equiva-
lent to solving for position, velocity, and acceleration corrections with the accelera-
tion corrections constrained to be a zero-mean Gauss-Markov or random walk proc-
ess. The K and G parameters should not be used as £ tochastic parameters simulta-
neously. If Kp is chosen, it can be viewed as solving for acceleration corrections along
the satellite-sun line and along the y axis. This is becanse the direct radiation pres-
sure force is almost constant throughout the orbit, so the scale parameter is simpl
scaling this near-constant acceleration. If G parameters are chosen, the acceleration
solved for is resolved into the RAC coordinate frame. The constant RP parameters
could be used with the stochastic K, parameters to account for non-zero mean accel-
erations in the satellite-sun and y-axis directions. A continuous thrust would serve
the same purpose for the G parameters.
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OBSERVATION EQUATIONS AND PARTIAL DERIVATIVES

3

RANGE

Asmentioned in the GPPS DATA FLOW section it is assumed that all data to
be used in the MSF/S system have been corrected for time transmission, relat.ivitg,
satellite antenna offset, tropospheric refraction, and solid earth tide station height
effects. Therefore the observation model is considerably simplified. For range (R)
data the nonlinear observation equation is given by

Rt,k (tobs) = lrd(toba) el '} (tobs) r - lios [ A‘lo (tobs) + 4y (tobs)]

AChg, (typs)
sin Ei,k (tobc)

(50)

+ i?b'; [Alz(tubg) + Alk (tobs)] +

where i = satellite subscript
k = station subscript
toss = observation time

r{t.s) = inertial coordinates of satellite i at t,,, interpolated off the
appropriate trajectory

ri(tons) = [ABCD (tp)] r,, (51)

= inertial coordinates of station k at t,,,

cos ¢, cos A, 0 \
re,, = (A+hy) (cosq_),, sin A, ) - A‘e”( 0 (52)
stn ¢, sin ¢, /

= Cartesian Earth-fixed station coordinates

(Ax, Or, R) = geodetic coordinates of station &

= oblateness of Earth

~]

[(2-Nr1+ (53)

3garth

Sl sin’ )t (64)

= semimajor axis of Earth's reference ellipsoid

aEa rth

ABCD(t,,) = inertial-to-Earth-fixed rotation matrix at ¢,,,. (Reference 1
contains the details of the inertial-to-Earth-fixed
transformation computations.)
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¢ = speed of light (km/sec)

Ad(te,) = nominal clock time offset of the ith satellite clock from
GPS time at t,;, (to be described below)

Ai (t,s) = time offset correction to the nominal clock for the ith satellite at t,,
(nominally zero)

Arl(ton,) = nominal clock time offset of the kth station clock from
GPS time at t,;, (to be described below)

A (tep,) = time offset correction to the nominal clock for the kth station at t,,
(nominally zero)

ACg, (tess) = zenith tropospheric refraction correction at t,,; (nominally zero)
E.x(top) = 90° — Arccos(p - ay) (65)

= instantaneous elevation angle from station & to satellite i
p = r (tubs) - rk(tubs) (56)
r Xk
uy = [ABCD(t,,)] Ykr (57)
zZgrl 1- €&
XEF\ : : :
The vector < y;.;p) is computed by evaluating equation (52) with h, = 0, and

25F [k
" indicates a unit vector.

Computation ofAz.Q(t) and Ai.o(t)

The nominal satellite time and frequency offsets at an arbitrary time t are
given by :
(t -tc‘)2

AG() = Au, + Aig, (¢ —t,) + Niyy —

(58)

A1) = Ady + At (t —t,) (59)

where Ay, Aiy, and Ai, are input quantities converted to internal units (nsec—»pse..
partsin 10'“~ppm, and parts in 10'/day—ppm/sec) and t;, is the ith satellite's clock
epoch. To accomodate jumps in the nominal clocks, four satellite clock events have
been defined. These events are described below in terms of their effects on the nomi-
nal clocks. The corresponding clock process noise adjustments were discussed in the
previous section. All events are input as time of the event (in day number and sec-
onds of the day) and associated clock offsets (in nsec, partsin 10', and partsin
10'*/day). These offsets are converted to the above internal units before use.
Processing of each event is described below.
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1. C-field adjust

A C-field adjust is a generic name for a commanded change in the satellite's
clock frequency (usually only applies to Cesium clocks). The amount of the change is
not known exactly, so a frequency uncertainty is added to the process noise matrix
for this event (see the STATE EQUATIONS section). This event affects the
nominal clock as follows:

For the first time t >t¢.fe1q,
(tc-feta, =t Y

Ay, isreplaced by Ay, + Aiy, (te eia, —tc) + Aty 3

and Ai, isreplacedby Aiy, + Aic.fog, + Ay, (e fietd, —tc)

All subsequent nominal clock computations for this satellite are referenced to a
redefined epoch, tc.s.q, and use equations (58) and (59).

2. Z-count adjust

A Z-count adjust is a commanded change in the satellite clock's time offset. The
amount of the change is known exactly. This event affects the nominal clock as
follows:

For the first time t = tz_coun,,

Ay, isreplaced by Ay, + Atz coun,

All further nominal clock computations for this satellite are based on equations (58)
and (59) with the clock epoch unchanged.

3. Clock reinitialization

A clock reinitialization is either a switch in the operational clock on the
st . ilite or an anomalous phase jurnp in the current clock. The uncertainties in the
1. testimates are set back to approximately the initialization values (see STATE
E° JATIONS section). This event aifects the nominal clock as follows:

For the first time t = t ¢,

Ay, A, and Ay, are replaced by a new set of values from input and the clock epoch
isredc..ned to t,.ini, for all further nominal clock computations.

Frequency change

A frequency change is an unexplained jump in frequency. For this event, it is
possible to Increase the uncertainty in each clock state (see STATE EQUATIONS
section). This event affects the nominal clock as follows:

For the first time t > tf,
Ay, isreplaced by Ay, + Aig, (b, ~tc) + At
Aiy, is replaced by Aif.

(tfc‘ - tc,)’
2

and Ay, isreplaced by Aif,
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" All subsequent nominal clock computations for this satellite are referenced to a
redefined epoch, t fo? and use equations (58) and (59).

If the total satellite clock offsets from a previous Filter or Smoother run are
available,

Az? (tups) + At (top,) is replaced by Airyai(t) + Airowm(t) (top—t)

where t — —?—t <tops S tj+ %

The total satellite clock offsets are defined in the SOLUTION AND
DIAGNOSTICS section.

Computation ofAzf(t) and Aif(t)

b The nominal station time and frequency offsets at an arbitrary time t are given
y

“  (t—t)?
At = Aig, + At (t—t,) + Biy, (t=te) (60)
Aipit) = Aip, + Ay, (t-t,) (61)

where Ag,, Ay, and A'r},} are input quantities converted to internal units
(nsec—psec, parts in 10'">ppm, and parts in 10'/day—ppm/sec) and t., is the kth
station's clock epoch. To accomodate jumps in the nominal clocks, three station clock
events have been defined. These events are described below in terms of their effects
on the nominal clocks. The corresponding clock process noise adjustments were
discussed in the previous section. All events are inﬁut as time of the event (in day
number and seconds of the day) and associated clock offsets (in nsec, partsin 10*,
and parts in 10'%day). These offsets are converted to the internal units before use.
Processing of each event is described below.

1. Clock reinitialization

A clock reinitialization is either a switch in the operational clock at the station
or an anomalous phase jump in the current clock. The uncertaintiesin the clock
estimates are set back to approximately their initialization values (see STATE
EQUATIONS section). This event affects the nominal clock as follows:

For the first time t =t ini,

Ay, Aty,, and A%, are replaced by a new set of values from input and the clock
epoch is redeffned t0 teinis, for all further nominal clock computations. This event is
also used to accommodate the GPS time steering procedure when the offsets between
GPS time and the master clock time change, but the designated master clock does
not.

2. Frequency change
A frequency change is an unexplained jump in frequency. For this event, it is

possible to incresse the uncertainty in each clock state (see STATE EQUATIONS
section). This event affects the nominal clock as follows:
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For thefirsttimet > t;

(t

fc,, - tc.)x

Avwg, isreplacedby Aig, + Aiy, (t, —tc) + Aip, —5
L)
Atp, isreplaced by Aifc
]

and Ag, isreplacedby A'z'f
Ch

All subsequent nominal clock computations for this station are referenced to a
redefined epoch,t,q , and use equations (60) and (61).

3. Time change

A time change is a commanded change in the station clock's time offset. The
?xﬁount of the change is known exactly. This event affects the nominal clock as
ollows:

For the first time t=t,,

Ao, isreplaced by Ay, + Au,

All subsequent nominal clock computations for this satellite are based on equations
(60) and (61) with the clock epoch unchanged.

4. Master station switch

The master station switch event involves two stations simultaneously: the original
and the new master stations. For the station that is no longer the master, a clock
reinitialization is dcne at tygs, i.e.,

Avg,, Atg,, and Ay, are replaced by new input quantities,

the clock epoch is redefined to be tuss, and all subsequent nominal clock computa-
tions are referenced to this redefined epoch. For the new master station

Av,., Afy,., and A%y, are replaced by new input quantities,

the clock epoch is redefined to be tuss, and all subsequent nominal clock compu-
tations for this station are referenced to this redefined epoch. The process noise
terms for these stations’ clocks are adjusted as specified in the previous section. In
addition, the information array elements corresponding to the clock states for the
new master station have to be modified. (See the FILTER ALGORITHM section.)

The linear measurement model, equation (2), requires computation of the
measurement residuals, z, and partial derivatives of the observations with respect
to the parameters, A. Each residual is computed by evaluating the observation
equation (50) at tos,, With Az(t.), Anltes,), and ACr (tas,) set to zero and subtracting
the result from the observed value. Next, the partia'l derivatives required for the A
matrix are defined. Whitening and decorrelation of the observations are discussed in
the FILTER ALGORITHM section.
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Range Partial Derivatives

As mentioned in the ESTIMATION CONCEPTS section, the partial deriva-
tives of the observation with respect to the %arameters are required for the Filter
algorithm. These derivatives are obtained by differentiating the observation equa-
tion with respect to all parameters explicitly present, and using the chain rule and
models o relate them to the solution parameter states. Let p;y = r; —=ry, pip = Ipia),
and R = R;,, then the partial derivatives of range with respect to the parameters in
the observation equation are:

3R _ 3R _ pir

an, e (62)
dR _ aR ¢ (63)
aly; B A, 108

R 1

aACR. sin E,‘,k

Using these partial derivatives, the partial derivatives with respect to the solution
parameters are:

6R _ 4R or _ AR (toy—t)  oF(Y)
dKpg dr; dKg o 2 BKR‘( tj)
(see equations (22) and (25))
R _ AR ar _ 3R (te, -t} ar(L)
aG.- al‘,‘ 86,» ar; 2 aG.( t J‘)
(see equations (29) and (32))
aR dR  B8ACk, R _ 4
= = L TCp, (67)
BACR.(tj) aACR. aACR.(t,) aACR‘
aA dR tops—t
aR = aR 'l = ( Ob‘ Uy tub‘—to 1 (68)
dCgy, dA:, dCgy, Ay 2
d dR aA dR
R~ o 9R (g,,,,,_t,, 1) (69)
dCys, Ay dCys, dl,
R _ @R ar,
de; ar; de;
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or; .
where v is interpolated off the reference trajectory at ¢,

e
dR dR odr, dR
——= — — = — (ABCD)'T (71)
3aAS, ar, dAS, anry ( T
where T, = (ug un iv), (72)
Xk»
" =(m> (19)
0
XgF uy
uy =<)'kr ) Jay = — (70
e/l -8 luayl
Uy XU
ds = (—if s <0°) (?5)
luy xug!
uy
Uy = uyxig, Uy = —— (76)
laapyl
SR _ 3R an (17

ar, .
where Py is interpolated off the reference trajectory at tq,

@R _ 4R or,

ar, (78)
ari or i aT;
0 if tope S trg
:-% = [dr(toss) — e tus)e(tr)dr tr)] iftr, < tos s tr, (19)

1}

[De(tos(de(trdrltr) -beltrbr(tr))]y  iftoss > tr,

where ¢, = partials of position and velocity with respect to epoch
orbital elements obtained by interpolating off the reference
trajectory at the appropriate time
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¢r, = partials of position and velocity with respect to the
cenonical thrust parameters obtained by interpolating off
the reference trajectory at the appropriate time

and [ ],denotes the first three rows of the 6 X 3 matrix

BB I M erg )+ BRI (g
aPM . \ap aq oAKT,) 3AHT,) ary OPM
hereet, X, ¥ apd interpolated off th
where —, — T ’
ereé'p . 3EHT) n aA“To)arem rpolated off the
reference trajectory at t,,, T denotes the trajectory epoch, and
‘ —zgy, O - @(t,p, —tolynr,
™ = (scoyr ~ 81
Proviig 0 zgr,  Otope—to)xpp,
Xy, —YEP, 0
9R _OR an_ (82)

ar
whereé-a'-c— is interpolated off the reference trajectory at t,,,

Observation equations and partial derivatives for all other data types are
derived from the range observation equation and partial derivatives.

RANGE DIFFERENCE

Range difference observations can be either of two types: the result of differ-
encing range observations at two different times or the result of integrating the
Doppler-ghifted frequency for a given time interval, Atzp. The latter type includes
differencing accumulated delta ranges that are continuous-count, integrated
Doppler from some epoch. Both types are treated the same in the measurement
processing. These observations are pairwise correlated if the end of one range differ-
ence interval is the same as the beginning of the next intérval. This correlation is
accounted for in the processing as described in the FILTER ALGORITHM section.
The nonlinear range difference (RD) observatior equation is given by
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RD,y = |P(tong) =Paltun)| =[P oy — Atun) =y (top, — Aty

- [( Aclts) + Au(tn)) = ( A (tun, — Atun) + Ay (Lo, — A:,.,,))]
108 (83)

+ -1%6[( Auk (tups) + Bua(tup)) = (Al (tup, = Btup) + Ary (tups ~ A‘"”))]

ACk (tuss) ACk (tup = Atgn)
+ -
sin E,, (typ,) SinE (t,, = Aty

where t,,, = end time of the range difference interval
and Aty = rangedifference interval in seconds.

This equation is just the range observation equation evaluated at two times and
differenced. The comfmt.ed value is the difference of two computed range values.
Therefore, the partial derivatives are the range partial derivatives differenced,
where the derivatives at both times are based on the same time t,. As a result of this
differencing, only the changes in the clocks over the interval Aty are relevant, i.e.,
dRD dRD

dl., Ay,

Differenced and doubly-differenced range difference data types are not
included in the MSF/S system. However, range difference data can be processed in a
mode that emulates these data types. The diflerenced range difference emulation is
based on the idea that single differencing to remove the satellite clo¢k fre?;nency off-
sets from the data is equivalent to solving for an independent frequency offset for
every group of simultaneous observations of that satellite. This can be emulated by
setting the clock frequencﬁeoffset state process noise variance to a large value to
decorrelate the estimates between mini-batch steps. The satellite frequency drift
state should not be solved for. For doubly differencing, this variance adjustment
must also be done for all station clocks except the master clock. This processing
technique fully accounts for the measurement correlations introduced by differ-
encing. However, this emulation is not exact if more than one observation from a
given satellite-station pair is present in the mini-batch interval.

DIFFERENCED RANGE

Differenced range (DR) observations are derived by differencing two simulta-
neous observations from the same satellite for any pair of stations. The purpose of
this differencing is to eliminate the satellite clock from the observations. No account
of the correlations introduced when two pairs of stations have one station's data in
common is included in processing of these observations. The nonlinear differenced
range observation equation is given by

34




NSWC TR 87-187

DR ki) = [Piltoss) —ral toss| —{riltops) =i (tobs)|

+ '%M[(A‘ko(tobs) + A'k (tubs)) - (A‘k? (tobs) + A‘k' (tobs))] (84)
ACRk(tobs) ACR,‘:(tobu)
+ -

sin E:.k (tobs) sin Ei,k' (tobs)

where k and k' are indicies specifying the two stations. Again, the computed value is
obtained by differencing two range computed values, and the partial derivatives are
obtained by differencing the two range partial derivatives. Zeroes are used for the
range partial derivatives involving the other station. This differencing results in the
partials for sateilite clock states being zero.

Range data can be processed in a mode that emulates this data type. This
emulation is based on the idea that single differencing to remove the satellite clock
time offset from the data is equivalent to solving for an independent satellite time
offset for every group of simultaneous observations of that satellite. This can be emu-
lated by setting the clock time offset state process noise variance to a large value to
decorrelate the estimates between mini-batch steps. The satellite frequency offset and
drift states should not be solved for. This processing technique fully accounts for the
correlations introduced by differencing. However, this emulation is not exact if more
than onle observation from a given satellite-station pair is present in the mini-batch
interval.

DOUBLY-DIFFERENCED RANGE

Doubly-difierenced range (DDR) observations are derived by differencing two
simultaneous differenced range observations from any pair of satellites for the same
pair of stations. The purpose of this differencing is to eliminate the station clocks from
the observations in agdition to the satellite clocks that were eliminated by the first
differencing. No account of the correlations introduced by this differencing technique
is included in the processing of these observations. The nonlinear doubly-differenced
range observation equation is given by

DDRj iy k) = (JFitons) =il toss)] = |ri tobs) —Fis (tons)])
- (lri'(tubs) "‘rk(tobs)l —"ri'(tobs) el ' (tobs)l)
1 1 8
+ ACt - — ) (85)
\8in Ejx (topy) $in Ep g (tops)

1 1
— ACk,(tus) ( _ — - )
sin E"’k' (toba) sin Ei',k' (tobs)
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where i, i' are indices specifying the two satellites and k, k' are the station indices. The
computed value is obtained by differencing two differenced range computed values,
and the partial derivatives are obtained by differencing the two differenced range
partial derivative sets with appropriate zeroes for irrelevant parameters. This
differencing results in all clock partials being zero.

Range data can be processed in a mode that emulates this dava type. In addition
to emulating differenced range data, all station clock time offset states (except the
master clock) should have their process noise variances set to large values. Also, all
station frequency offset states should not be solved for. The comments given under the
disalxssion of emulating differenced range also apply to doubly-differenced range
emulation.

FILTER/SMOOTHER PROCESSING FLOW

Figure 4 gives a functional definition of the processing flow within the MSF/S
system of programs. The Filter isinitialized at t, or restarted at an arbitrary mini-
batch step if previous filtering has been done. At each mini-batch step a measurement
update is performed first, followed by solving the equations and generating diagnostics
if required, and then propagating to the next mini-batch step. No propagated solution
is ever computed unless observations are not present in a given mini-gatch interval
and solutions at each mini-batch step are required. This process is repeated until the
solution and diagnostics at ty are completed. At this point the y parameter solutions
are final, i.e., no smoothing of the y parameters is possible. If stochastic orbit-related
paraineters are not present, the resulting orbital element and constant force model
parameter corrections can be applied to their initial values and used to reintegrate a
trajectory if the orbit is not converged, or an improved trajectory can be linearly propa-
gated as in a batch fit. The polar motion and station coordinate tables are updated at
this point. The updated station coordinates are required for the residual generation
Erocedures. The appropriate information arrays and partial derivative matrices must

e saved from the Filter at each mini-batch Steﬁ to be used in the smoothing process. A
Filter propagated trajectory can be created at this time if required and also a set of
improved initial conditions.

Two paths within the Smoother are possible. If state and covariance estimates
are required the left side is followed. If state estimates only are required the right side
is followed. In the first case the smoothing arrays are initialized at ty and smoothing
proceeds in reverse time order. At each mini-batch step smoothing arrays are
manipulated followed by solving the cquations «nd generating diagnostics. Thisis
repeated at each step until the process terminates at t,. Smoothed trajectories can
then be propagated and/or the SATRACK covariance matrices can be computed. In the
second case the state estirhates are initialized at ty as in the first case and smoothing

roceeds in reverse time order. At each mini-batch step the state estimate is computed

ased on the estimate at the previous step, the information arrays saved in the Filter,
and the stochastic state equations. This process is repeated until t,is reached. No
covariance information can be computed for this option but the rest of the diagnostics
can. Trajectories can then be propagated followed by generation of residuals.
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The rest of this report will detail the square root information implementation
of the Filter and Smoother algorithms, the method of obtaining the solution and
diagnostics (these are identical in each algorithm except for handling the y parame-
ters and for residual generation), the trajectory propagation procedures, and the
SATRACK covariance matrix generation formulation. Derivations of some of the
equations and showing that they are equivalent to the standard Kalman filter/RTS
smoother equations are included in the appendicies. Also a discussion of properties
of Householder transformations and the upper triangular matrix inversion method
are given in the appendicies.

FILTER ALGORITHM

The Filter can be described as a square root information filter based on the
form of the state equations given in the STATE EQUATIONS section and the
observation equations given in the OBSERVATION EQUATIONS AND
PARTIAL DEVIRATIVES section. The Filter consists of four processing steps,
the last three of which are repeated: Initialization/Restart, Measurement Update,
Solution and Diagnostics (optional) , and Propagation. After initialization or restart
of the information arrays, at each mini-batch step , t;, a measurement update is per-
formed if there are any observations in the corresponding mini-batch interval. Then
the solution and diagnostics are computed if required and the information array is
augmented and propagated from t; to t, ;. Portions of the information array required
for smoothing are then saved. This cycle repeats until a measurement update at ty
has been done. The y parameter information at this time is final and is used
{.}hrl'oughout the smoothing procedure. Details for each processing step are given

elow.

INITIALIZATION/RESTART

The primary purpose of this step is to set up and initialize the information
arrays. The parameters, if present, are always ordered as given in the state equation
description, 1.e., p parameters with orbit-related ones before measurement-relatea
ones, x parameters, and then y parameters. In addition since both orbit-related p
parameters and tropospheric refraction are modeled as first-order Gauss-Markov
processes, these are at the top of the parameter list so that the propagation step com-
putations can be made more efficient. The following notation is used in the rest of
this report.

Np = number of orbit-related p parameters, maximum of 6Ngy

Ny = number of measurement-reiated p parameters, maximum of
3Ngy + 3Nus

N, = number of p parameters ( must alwaysbe > 0) = Np + Ny

N¢y = namber of Gauss-Markov p parameters, maximum of 6Ngy + Nyg
N, = number of x parameters, maximum of 6Ngy

N, = number of station-related y parameters, maximum of 3Nys
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N, = number of orbit-related y parameters, maximum of
3Ngy + 3Np + Npy + Ny

N, = numberofyparameters = N, + N,

Nror = total number of parameters = N, + N; + N,

where Ngy = number of satellites !
Nys = number of stations |
Nr = number of thrusts

Npy = number of polar motion parameters = 3
Ngc = number of gravity coefficient parameters

The parameter set for a particular fit is selectable but with the following
restrictions:

1. All orbit-related parameters except for thrusts, polar motion, and gravity
coefficients are present for all satellites and individual parameters must be selec-
tively deweighted if required.

2. All measurement-related parameters are present for all satellites or sta-
tions and individual parameters must be selectively deweighted ifrequired. The
clock parameters for the master station are automatically deweighted and the
corresponding white noise spectral densities are set to approximately zero.

3. Allstation-related parameters are present for all stations and must be
selectively deweighted if required. If orbits and station coordinates are being solved
for simultaneously, the east component of one station should be deweighted.

4. Ifonly differenced range and doubly-differenced range are being processed,
satellite clock parameters are not included in the state equations. If only doubly-
gliftiergnged data are being processed, satellite and station clock parameters are not
included. ‘ .

5. Ifonlyrange difference data is being processed, all satellite and station
time offset parameters should not be deweighted unless all the white noise spectral
densities are zero.

6. Stochastic orbit-related parameters can only be solved for if pseudoepoch
orbital elements are also present in the equations.

The following notation is used in the rest of this report:
~indicates a Filter predicted quantity

~ indicates a Filter estimated quantity
* indicates a Smoother estimated quantity
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The initial forms of the two information arrays at t, are given by

p-x information array y information array
<R"° o0 o) N,+N (R, 0)) N (86)
+N,; R
o R, o o/f" il ’

N, 1
Nror 1

where R, is an N, XN, diagonal matrix with each element of the form 1/0, and R, is
an N, XN, diagonal matrix with each element of the form 1/g,. o, and o, are a priori
parameter sigmas in internal units. (The y array is not present if N, = 0.) The R,
matrix is N;.XN, and has the form

o o (87)

where each R, is a 6 X 6 matrix computed for each satellite by

ﬁ. = C;C‘AC R'T (88)

where Crac = de (89)

o's are input a priori sigmas on radial, along-track, and cross-track position (in km)
and velocity (in km/sec) at the fit epoch.

. R 0 ' (90)
0 R

R= (¢ X% ¢ XV (91)
Ir x Wi Ir x vl
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r, vare inertial coordinates of the satellite at the fit epoch interpolated off of the
reference trajectory.

ax ax ax
. w e “a
dy dy dy
| . a? ‘;, ........ ........... E ©2)
az  ax i a3
s g

/

T' is a matrix of partial derivatives of position and velocity at the fit epoch with
respect to orbital elements at the trajectory epoch interpolated off of the reference
trajectory.

R, is just the fit epoch RAC position and velocity sigmas transformed to a covariance
mitrix on orbital elements at the trajectory epoch, inverted and with the square root
taken.

To restart the Filter the assumption is made that all physical constants,
spectral densities, decorrelation times, and other quantities must be the same as
those used in the last execution of the Filter. The two information arrays are then
initialized with the results of the propagation step from t,_; to t, as follows:

p-x information array y information array
R, R, R, 2 .
=~ : ’ g (R)' E.Y)C-I (93)
Rxp ﬁx ny i, ¢
MEASUREMENT UPDATE
S - . At At
All observations in the mini-batch interval ( t, —5~.t,+ 5= | are processed

simultaneously because computationally this is the most efficient. Measurement
uidating is carried out by augmenting the propagated information arrays with the
whitened ard deccrrelated measurement matrix and residuals (A z) and tranforming
this expanded array using Householder orthogonal transformations. The details of
. these procedures are given as follows: A A
t t

1. All observations with observation times, t,,, such that t,— - <t,,st; + —
are processed for the stations and satellites selected unless: 2 2

a. thisdata type is not being processed or t, lies outside of the subspan

for this particular data type,
b. the corresponding pass number is in the list of passes to be deleted,
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the observation sigma indicates that this observation hasbeen
previously tagged (negative sigmas indicate this),
d. anf elevation angle is less than E,; -~an input tolerance in degrees, or
e. aclock event for the given station or satellite is preseat in this

interval.
Atthe start time, tg®*?, of the rxduced mini-gadtch step span the mini-batch
t e
interval is defined as (tgfed — P tgfted 4+ 3 . At the end time, tg??, of the

reduced mini-batch step span the mini-batch interval is defined as
Red. t
(tg_““-’d-- . tRed 4 . ] . Ifno observations are present in a given mini-batch

interval, the Householder transformation is still done in order to upper triangularize
the array, i.e., the transformation indicated in equation (103) below is done with the
(A z)rowsabsent. If no solution is required the processing skips to the propagation
step.

2. For all remaining observations, the partial derivative matrices
(designated A') relating the observations to each parameter are computed along with
the residuals (designated O-C') as described in the OBSERVATIORJ EQUATIONS
AND PARTIAL DERIVATIVES section. Only those partial derivatives with
respect to the relevant satellite and station parameters are non-zero. All others are
zero with each column corresponding to a parameter as ordered in the state
equations. These quantities are denoted by

K = (4, &, &) r=0-C (94)

M, X (N, + N+ N,) M; X 1
where M; = number of observations in the mini-batch interval centered at ;.

3  All obseivations are then whitened and decorrelated. To whiten range,
differenced range, and doubly-differenced range each row of the partial derivative

matrix A’ and the residuals z'is divided by its observation sigma, 0,4, or by 0,44, for -

that data type if 6,4, <0, to get A and z. For the range difference data where

toss — Atrp = top, (™ "vious), i.e., the beginning of the range difference interval isnot
identical to the ~%-. rvation time of the previous observation from this same station-
satellite pair, a similar procedure is used. However, if the times do coincide the
observations are correlated and must be whitened and decorrelated before being
processed. The ran%e difference data are whitened and decorrelated as follows (see
Appendix F for the derivation of this procedure):

If the observation is not ta %‘gd the two input sigmas for the observations
differenced to obtain the range ditference observation, designated oapr, , and oapg,,
are possibly redefined as follows:

T ORrD
MIN MIN
OADR,,, = il U <Ogpg,, < Vo (95)
ORDyN . ORDy
OADR, = — if aapg, < (96)
V2 V2
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The range difference observation sigma is then given by
Orp, = (?:DR,,_, + Q:DR,,) y 97)

If oopr, , = 0 or the last range difference observation for this satellite-station pair
was not processed, the observation is whitened by dividing Agn and zkp by oy .
3, is then set equal to ogp , and G, Agp , and zgy are saved. If gapp, , = Othe
observation is whitened and decorrelated as follows:

s = TR (98)
Gna

0, = (0kn,~ Pn1)? (99)

Arp, = (ArD, —Pn-1 Arp, )Gn (100)

2o, = (zhp, —Pn1 2RD, )00 (101)

Gn» ArD,, and zgp_are then saved. It is assumed that if an entire mini-batch interval
is processed before the same satellite-station pair occurs again, the new observation
is uncorrelated with the previous observation. This is done so that information does
not have to be saved for more than one mini-batch interval.

The effect of the accumulated clock noise during the Atg) interval is not
modeled so the minimum observation sigma for range difference data should be used
to account for this effect.

4. The propagated p-x and y information arrays without the terms required
for smoothing are given by

R, Ry Ry 7 A
(Ry %) = (R, z,), (102)

-
N

Rxp Rx xy ;

(Np + N) X (N, + Ne + Ny +1) N, X (N, + 1)
The measurement update is done in two steps if y parameters are present. The
p-x information array is augmented by (A z), and a sequence of Householder

orthogonal transformations, T,,, are applied to zero out elements below the diagonal
of the first N, + N, columns:
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RP RP’ ﬁpy zp ﬁp ﬁp‘ ﬁPJ ip
Tpx kxp RI ny ~l = 0 kx kxy ix (103)
Ap Ay A ¥y Z 0 0 A y z

(Np+Nz+M) X (Np+N;+N,y+1)

where R, and R, are upper triangular matrices. If no y parameters are present the
columns with a y subscript are absent, z = ¢, and the measurement upgate is
complete. The e term is related to the sum-of-squares of weighted residuals. Ify

arameters are present, the measurement update is completed by augmenting the y
information array with (A, z) and applying another sequence of Householder
orthogonal transtormations, T,, to zero out elements below the diagonal of the first
N, columns:

£, =

& “ 104
A, 2 c/ (104)
J J

(Ny+M) X (N, +1)

R, 2, R, 2,\
0

where both R, and R, are u%per triangular matrices, i.e., the y information array is
always upper triangular. (R, Z,) could be added as extra rows in equation (103) above
but this is not done to save storing a large block of zeroes that would never change.

The transformation matrices 'f‘,,, and T, are not explicitly computed.
Householder transformations can be carried out by operating on the columns of a
matrix one at a time as follows:

Let R be an arbitrary m Xn information array. To zero out all elements below
the diagonal of the first column define a scalar s and a vector u by

m 4
s = —sgn(RU,N| & [RG,1)? (105)
i=1
u(l) = R(1,1)—s (106)
u(i) = R(,1) i=2,3,...,m (107)
1
Q= (108)
su(l)
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m
Then definey, = a ) u(i) R(,j) (109)
i=1

The effect of the transformation T, on a column j is then written as

T(R(i,j)) = R(i,j) + y,u(i) i=12..,m (110)

s
0
This results in the first column being 0 as shown in Appendix G. This is the

0
intended result and this must be done to every column of the array. This procedure
is then repeated to zero out the below diagonal elements of the second column with u
defined by the last m — 1 rows of this column. This procedure (in which the matrix
operated on decreases in both dimensions at each step) is repeated until the required
number of columns have been transformed. A property of Householder transforma-
tions that affected the implementation of equations (103) and (104) is discussed in
Appendix G also.

5. If any diagnostics are to be computed or a trajectory is to be progg ted, the
solution is then computed as described in the SOLUTION AND DIAGNOSTICS
section. If a master station switch has taken place in this interval the two diagonal
elements of the R, array correspor.ding to the new master station clock parameters
are set to large values after solution. If the last mini-batch interval centered at ty
has been processed the filtering is complete and a solution is computed for the y
parameters if present.

PROPAGATION

Propagation from t, to ¢t ; involves modifying the p-x information array to
incorporate the effegts of process noise. Bias parameters are unaffected by process
noise so that R, , =R, . Propagation also involves generation of auxiliary arrays
required for smoothing. The prog:sation step ic based on the state transition and R,,
(derived from Q) matrices described in the STATE EQUATIONS section. An
augmented p-x information array is upper triangularized over the first N, columns to

carry out the propagation as follows:

N, N, No N, I
~R M R, 0 0 0
T, | R,—R,V, 0 R, R, 12, = (111)
—R.V, 0 R, R,, z, ;
Rp Rp R Ry 3 } N
0 R, Ry, Rpy Z, } N,
0 Ry, R Ry %/ }N
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where R; is an upper triangular matrix and * denotes the smoother-related matrices
required to obtain smoothed state and covariance estimates at t;, The Househoulder
transformations are done as described above in the Measurement Update processin
step except that a computational reduction is made. All columns of the — R,M matrix
have zeroes below the diagonals down to and including row N,. When applying the
transformation to the first column, rows 2 through N, for all columns do not change
because of a property of Householder transformations given in A’Fgendix G. These
rows are ignored in the computations to save on computer time. This reduction
applies to the first N, - 1 columns as they are zeroed out below the diagonal. Another
property of Householder transformations given in Appendix G is also applied i -
implementing equation (111) and is possible because R, is diagonal for the first
Ngwn rows and columns. When processing the first column the only additional column
that changes out ol the the first 2 N, columns is the N, + 1 column. When processing
the second column only the N, + 1 and N, + 2 columns change out of the first 2N

- columns. One additional column is affected until column Ngy + 1 is processed. The
part of R}, corresponding to the Gauss-Markov parameters is upper triangular and
the part of R, corresponding to these same parameters is lower triangular. Thisis
the reason wﬂy the Gauss-Markov parameters are ordered first in the state equa-
tions. The R, and M arrays are a function of the mini-batch step size so they are
adjusted starting at tg®*? and then reset to their originai values at t;®*¢, Portions of
the R, matrices corresponding to the satellite and station clocks are adjusted
appropriately for events as required. The predicted solution is never computed in a
square root information filter because either a full matrix inversion or a House-
holder té'ansfonnat.ion followed by inversion of an upper triangular matrix is
required.

Apgendix H discusses the derivation of the measurement update equations
(103) and (104) and the propagation equations (111). Also this appendix shows the
mathematical equivalence between these equations (actually a more general form of
the propagation equations) and the Kalman filter equations given by equations

(3) thru (7) in the ESTIMATION CONCEPTS section,

SMOOTHER ALGORITHMS

Two smoother algorithms are included. The first uses Householder trans-
formations to upper triangularize smoothing information arrays from which both
state and covariance estimates can be computed. This is referred to as the Array
Smoother here but is commonly called the square root information smoother. The
second combines the stochastic state equations and data equations derived from the
information arrays saved in the propagation step of the Filter to obtain state esti-
mates only, i.e., no covariance information is available. This is referred to as the
State Only Smoother. The Array Smoother consists of three processing steps, the
last two of which are rcpeated: Initialization, Array Smoothing, and Solution and
Diagnostics. At each mini-batch siep t, a smoothing array is constructed using the
array solved at t;,, and the array saved in the Filter when propagating from ¢, to
t,+:. This array is upper triangularized for 2N, + N, columns and combined with the
y parameter solution matrices from ty (which remain constant throthout the span)
to obtain the state and covariance estimates. This cycle repeats until the solution at
to has been computed. Details for the first two processing steps are given below
followed by a description of the State Only Smoother.
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INITIALIZATION

The purpose of this step is to set up and initialize the information arrays. This
step is common to the two smoother algorithms. The order of the parameters is the
same as that used in the Filter. At ty the arrays are initialized with the arrays
determined after the measurement update at ty done in the Filter. The Smoother
solution alt) ty is identical to the Filter solution at ty. The information arraysat ty
are given by

p-x information array y information array
N, N N 1 N 1
SO QNIA — (112)
R, Ry Ry 1, }Np R, 1), } Ny
0 R, R, %/} N,
N

where ft,, R,, and R, are upper triangular matrices. The y information array does not
change in the smoothing process.

ARRAY SMOOTHING

Smoothing of the p-x information array at time ¢t; is accomplished by applying a
sequence of Householder transformations to zero out elements below the diagonal of
the first 2N, + N, columns of an augmented p-x information array as follows:

Np N, N, N, 1

A

rot s —_— T e
Rpp(t)) Rn(tj)"'k»(tj)M +Rpx(tj)vp, Rplt) Ry(t) Z,(t)

Tpps Rp(tjiv)  Rp(tj+ DM+ R4 0)Vp  Rpltinn) Rp(tien) 2z3(tiv)) | = (113)
0 Rt )V, Ri(tiv1) R:(tis)) 2;(tj+l)l

/ Rp(t) Ryt) Ru(t) Ryft) zpt) \ } N,
0 Ry) Ru(t) Ryt) zxt) | } N,
0 0 Rt} Ry) 2:t) / } N,

where the~terms correspond to the * terms saved in propagating in the Filter from t;
to tj+1. Ry, Ryp, Rp, and R; are all upper triangular matrices. The Householder trans-
formation is carried out as described above in the Measurement Update processing
step. These computations also take advantage of the sparseness of the v, matrix and
the fact that M is diagonal. The terms ideniified with the'superscript are not
required for any further computations. The solution method for this approach is
siven in the SOLUTION AND DIAGNOSTICS section. Appendix I contains a

erivation of these smoothing equations and also shows the mathematical equiva-
lence hetween these equations (actually a more general furm) and the RTS smoother
equations given by equations (8) thru (10) in the ESTIMATION CONCEPTS
section.
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STATE ONLY SMOOTHING

This approach utilizes the stochastic state ﬁuaﬁom involving the pand x
arameters along with the data equations derived from the information arrays saved
in the Filter propagation step to recursively generate smoothed estimates for the p
and x parameters. The initialization arrays given above are solved at ty to get Apy,
Axy, and Ayy. Then given the smoothed state solution at ¢, , the sinoothed state
solution at t; is just given by

AP_,' = [Rp(tJ)] ' lip(t_’) - Rpp(tj)Ap;+ 1= Rp:( tJ)ij.f-l - kpy(tl)A’ﬁ] (1 1‘)
Ax; = Ax)y, -V, Ap/ (115)

where~denuies matrices saved in propagating from ¢, to t,,; and R,(t,) is always
upper triangular. All elements of vV, which multiply non-orbit-related p parameters
are zero and orbit-related p garamef‘ers for a given satellite affect the x parameter
solution for that satellite only. This procedure requires the inverse of an N, XN
upper triangular matrix at each mini-batch step instead of an (N, +N,) X (rﬂ.-n- IJ:)
matrix as in the Array Smoother algorithm.

SOLUTION AND DIAGNOSTICS

The solution method and the diagnostic computations are almost identical
between the Filter and Array Smoother and are therefore described here together.
The state solutions and all diagnostics depend on first computing the inverses of the
upper triangular p-x and y information arrays. These inverses are always computed
in the Array Smoother but are only computed in the Filter if any diagnostics are
required or a trajectory is to be propagated. The ible diagnostics are correlation
coefficients (et every nth mini-batch step), transiormed corrections and standard
deviations, total clock offsets, and residuals and signal-to-noise after fit. For the
State Only Smoother all diagnostics are available except for the standard deviations
and correlation coefficients.

SOLUTION

The solution (state), AX;, and covariance, P;, estimates are computed as follows:

- Ry 2y
AX, ={ Ax | = 0 R, z, R,, (116
J

-1
Ay /; R, 2z,
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1 _-T

P_, = Rj RJ' ’ (117)

( R, Ry . <Rp Rpxil Ryy R'

R, = 0 R, ) " \0 R ) (R,,) ’ (118)
0 R, f

where all quantities denoted " in the Filter and * in the Array Smoother are

evaluated at t; except for the Smoother, in which R, and z, are fixed at their values

at ty. All R, R,, and R, matrices are always upper triangular so that both ( R, Ry, '

. 0 R,
and R, ‘are upper triangular also, since upper traingularity is preserved by inversion.
The inversion of upper triangular matrices is discussed in Appendix J. The solution
is always computed for the y parameters at ty in the Filter and may be computed at
each mini-batch step if che y parameter only or full diagnostics are being computed.
The solution information is saved in the Filter only if a trajectory is to be later
propagated. In the Array Smoother this information is always saved because it is
required for trajectory propagation and residual generation. The full covariance
matrix is computed only for mini-batch steps for which the correlation coefficient
matrix is required. Certain submatrices of the covariance matrix are required for
deriving the standard deviations on transformed corrections.

At the last mini-batch time ty in the Filter the final y parameter solutions are
available. Each set of coordinates in the station coordinate table is then updated as
follows, if these parameters were improved:

180 (1—e’sin’p)*AEy

A A
o« agamcos b
180 (1—¢*sin‘dp)*” ANy
— + i (119)
¢ ¢ n aEarlh( 1-¢ )
h h AV
Updated Orig.
XEFR XEF AE
YEF = yer | + T | AN (120)
ZEp Zgp AV
Updated Orig. N

AEN
where <2N) are the coordinate corrections at ty and T is the transformation matrix
v

defined in the OBSERVATION EQUATIONS AND PARTIAL DERIVATIVES
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section- equations (72)=(76). Each daily entry in the polar motion table is also
updated as follows:

P p Apy
q = q + Aqn (121)
At At A(ADNE —ty)
Updated Orig.

where t — t, is in seconds.

Improved initial conditions at the trajectory epoch T, can be computed in the
Filter if no stochastic orbit-related parameters are present. These improved initial
conditions would primarily be used to reintegrate a trajectory if convergence has not
?clclurred when emulating a batch fit processor. The required equations are given as
ollows:

ar(Ty)
r r
de
= + Aey (122)
. aKT))
F r
Improved Rej. de

where the partial derivatives of position and velocity with respect to orbital elements
are obtained by interpolating oft of the trajectory at To.

vm T ARP, (123)
+ AT, i=1,2 (124)

Kr

R Improved -

il mproved - TlNum.

CORRELATION COEFFICIENTS

The correlation coefficient matrix is computed every nth mini-batch step in
terms of the actual solution parameters and not a transformed set. Each element of
the covariance matrix is computed as follows:

Nror
pm‘n = pn'm = 2 rn'crm'e n’m=1’2,oo-,NTOT (125)
€ =max(m,n)
where reR'and peP=R 'R'T

and €= max(m,n) takes advantage of the upper triangular form of R '. Each
correlation coefficient is then computed as follows:

1. ifm=n
nym= 1,2...,N1'01' (126)

Cmn = Capm = Pm.n

V' Pm,m P

ifm=zn
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Only a lower triangular array of correlation coefficients is computed since the
covariance matrix 1s symmetric. The correlations between any pair of y parameters
in the Smoother is the same at every mini-batch step.

TRANSFORMED CORRECTIONS AND STANDARD DEVIATIONS

All solution states, as mentioned before, are corrections to nominal values in
internal units. On option these corrections and their corresponding covariances are
converted to more meaningful corrections and standard deviations before being
printed or plotted. If the state only smoothing option is selected no standard devia-
tions can be computed. y parameter only corrections and standard deviations can
also be computed in the Filter,

Stochastic radiation pressure parameter and all orbit-related y parameter
corrections and standard deviations are unchanged. Gravitational acceleration
parameter corrections and standard deviations are converted to 10 ’km/sec’ for
g‘lotting so that they are in the same units as the y-axis acceleration parameter.

ropospheric refraction parameter corrections and standard deviations are con-
verted to cm for plotting. Satellite clock parameter corrections and covariances are
converted from pseudoepoch state to current state representations as follows:

Ai(t)) 1 0 0 A%y
Ai(tj) = tj— ty 1 0 Aio = ¢CstCSV(tj) (127)
(tJ - tu)z
Al(t_,') ti-ty 1 Ag
2 \ J
Pc (t) = dc,, Pocsv(tj) %Tsv (128)

Frequency drift terms are converted from ppm/sec to parts in 10'*/day, frequency
offset terms are converted from ppm to partsin 10'%, and time offset terms are con-
verted from psec to nsec. Station clock parameter corrections and covariances are
also converted from pseudoepoch state to current state as foliows:

ae)\ 1 o\ /i
= &, ACks(t) (129)

Ad(t)) t,—ty 1 Aza_

j

Pcus(tj) = dey P”C.,s.‘tf) Qlus e

Frequency offset terms are converted from ppm to parts in 10' and time offset terms
are converted from psec to nsec. Only the square roots of the diagonals of P¢,, and
P, are required.
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For each satellite the pseudoepoch state orbital element, radiation pressure,
thrust(s), and gravity coefficient corrections and covariances are converted to
gition and velocity corrections and covariances in the RAC reference frame as

ollows:

Ar)
(t) =
YA

Prac(t))

+ 4+

where R

r,r

d.

Grep

or

dem

RT { @,AC_,‘ + 'PRPARPJ' + ¢1"A1'11 + ¢T,AT2J + (l)pMAPMJ + QG(:AGCJ') (131)

R™ (®.P.dc+ brePre $rr+ &r,Pr, ¥, + Or,Pr, ¥7,+ druPruden (132)
®ccPee dGo+ 20cPe.rp Brp+ 20cPe,r, 1, +20P.,T, &7, + 20 Pe.pu $ru
2¢.Pecc doc) R

(

R
0

(133)

a . X . . »
x # 2.-..‘&) p=" 3=1L (134)

el I®

inertial position and velocity obtained by interpolating off of the

trajectory att, ar i)
. aPF,Mi; . . .
6 X 6 state transition matnx—a—&—’— obtained by interpolating off of
the trajectory at t,
ar(t)
aRP . L] .

. partials of rand £ at t; with respect to RP interpolated off
art)) of the trajectory
dRP
ar(t_,‘)
aT 3 .

. partialsof rand # at t; with respect to T computed using
ar(t;) equation (79) in the Range Partial Derivatives subsec-
e tion except evaluated at t;and all 6 rows are required
ar(t,-)
ap" . L] *

. partials of rand F at t; with respect to PM comfmted asin
ar(t;) equation (80) in the Range Partial Derivatives subsec-
— tion except evaluated at t; and # replaces r in computing
dPM the velocity partials
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ar(t;)’
4GC .
bec = . = partials of rand r at t, with respect to GC interpolated off
ar(t;) of the trajectory
aGC

P,, Pgp, Pr, Ppy, Pge, Perp, P, 1, P, pp, and P.c are portions of the full covariance
matrix computed by equation (125) above. Only the square roots of the diagonal
elements of Py, are required in km and km/sec. These are converted to meters and
mmy/sec for plotting.

The corrections and standard deviations for the two pole coordinates are con-
verted to km at the Earth's surface by multiplyin by, agq, and then to meters for
plotting. The correction and standard deviation for At are converted to msec/day.

TOTAL CLOCK OFFSETS

The current state satellite time and frequency offsets from GPS time and fre-
quency are computed by adding together the nominal clock offsets and the current
state solved-for clock correction at ¢, i.e.,

Airowai(t) = AL(t)+Adt) (135)
Airoat) = AF(L)+Ailt)) (135)

The nominal clock may contain jumps and is computed in the Filter at each mini-
batch step. The total satellite clock offsets can be computed in both the Filter and
Smoother. The SATRACK project requires the Smoother-derived total clock offsets
for both the satellites and stations. The values for the stations are obtained using
parallel computations.

RESIDUALS AND SIGNAL-TO-NOISE

Residuals after fit are computed in the Filter for each mini-batch interval by
linear adjustment of the original residuals, i.e.,

(0-Cly = (0—C) —AAX, (137)

where AX; is the solution for all states and A'and (0—C)' were saved before being
whitened and decorrelated. The signal-to-noise ratio is defined as the square root of
the weighted sum-of-squares of residuals divided by the number of observations. For
each mini-batch interval it is computed after fit by

2

f“f (o-cmﬁ

= 1 005 m

(S/N)f0-C) = | ° Oub (138)
MJ
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where 0,,, is the actual sigma used (may be different from the input value because of
the minimum sigma override) and M, is the total number of observations processed in
the jth mini-batch interval. The signal-to-noise ratio for each mini-batch interval in
the Filter is also available without computing adjusted residuals as a by-product of
the square root information implementation. The e vector in the information array
after measurement update is related to the signal-to-noise as follows:

Mo\
3 e,
=1
(SIN)(Filter) = | —— (139)
M;

Residuals and signal-to-noise after fit from the Smocther for each mini-batch
interval are obtained by reprocessing the same observations used in the Filter. This
isdone by evaluating the observation equations using both the nominal and solved-
for clock information, tropospheric refraction corrections, updated station coordi-
nates, propagated tra{’ectories (described in the next section), and updated polar
motion information. If the corresponding Filter execution used previously computed
total clock offsets for the satellites, this same information is useg in generating
residuals from the Smoother. Equation (138) is used with (0 — C),4; replaced by
(0 — C)sp. to get the Smoother signal-to-noise ratio (S/N)(Smoother) for each mini-
batch interval. Then the overall Smoother sig'nal-bo-noise‘rat.io is compuied by

- -
2 M,i(s/N){Smoother)]

j=0
Overall S/N (Smoother) = (140)

™M=

M.I
ji=0
where N + 1 is the number of mini-batch steps (corresponds to t, thru ty). The
number, mean, standard deviation, and RMS of residuals for the entire fit span by
satellite, station, and overall for each data type are computied. Residuals are
converted from kilometers to meters for plotting. Residuals are also computed for
observations not processed in the Filter because they were tagged, did not pass the
elevation anfgle tolerance test, or were deleted by pass number. On option residuals
for range difterence, differenced range, and doubly-differenced range data can also
be computed if range data for the same stations were processed in the Filter.

o,
1]

TRAJECTORY PROPAGATION

All orbit-related parameter corrections are transformed into inertial position
and velocity corrections at each trajectory timeline using linear propagation tech-
niques. These corrections are added to the reference trajectory positions and veloci-
ties at each timeline to produce the propagated trajectory. Earth-fixed position and
veloc:ty are obtained by transforming these improved inertial coordinates using
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improved values for polar motion if also sulved for. The propafated trajectory span
ncrmally corresponds to the fit span with at least 4 extra timelines added on both
ends to accomodate the interpolatior method. However, in the case of no orbit-
related p parameters being solved for ("batch” mode), the propagated trajectory is
identical in length to the reference trajectory (except it has fewer extra timelines at
each end) even if the fit span is a subset of the trajectory span. Also in this case the
partial derivatives and other quantities (primarily solar radiation pressure model
related items) on the orifinal reference trajectory can be copied to the propagated
trajectory if required. All satellites are processed simultaneously. Improved initial
conditions required for integrating new trajectories can be computed after
propagation is completed as described at the end of this section.

The corrections to inertial position and velocity at a given trajectory timeline
T, are computed as follows:

ar(T,) ar(T,) ar(T,)
ANTY) = AKy + AG, + — Ae, (141)
aKR(t,-) ac(tj) de
ar(T,) ar(T,) or(T,) ar(T,) ar(T,)
+ ARP, + AT, + — ATy + APM,+ —— ACC;
aRP aT, aT, aPM aGC
aKTe) aNT,) oM(T,)
AXT,) = AKRI + AGJ' + — A.j (142)
aKg(t)) aG(t)) de
KT,) aNT,) Ty aHT,) aNT,)
+ ARP, + ——— AT, + — AT; + APN; + AGC,
JdRP aT, aTg dPM aGC

where the orbit-related parameter corrections at t, are used if T, <t,, the corrections
at t;are used if t;<T,<t,,,, and the corrections at ty are usedif T,=ty. The partial
derivatives of position and velocity with respect to orbital elements, radiation t]:ol'es-
sure, thrust(s), polar motion, am}fravity coefficients are the same as those defined
in the SOLUTION AND DIAGNOSTICS section except they are evaluated at T,.
The partial derivatives of rosition and velocity with respect to stochastic radiation
pressure and gravitational acceleration parameters are the same as those defined in
the STATE EQUATIONS section with t;, , replaced by T, ( equations (22) and (23)
for K; and equations (29) and (30) for G). These partials are zero if T,=t,. Thisisa
result of the pseudoepoch state formulation of the equations. If a Filter *batch™ mode
propagated trajectory is being created the orbital element and orbit-related y param-
eter corrections at ty are used at all trajectory timelines. If a Smoother propagated
trajectory is being created the orbit-related y parameter corrections at ty are also
used since no smoothing of these corrections is possible.

The improved inertial position and velocity at a given trajectory timel'ine are
then given by

Pimproved(Te) = Pref(Te) + AN(T,) (143)
flnprwtd(rt) = i'Rcf.(Tf) +AKT,) (144)
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The improved Earth-fixed position and velocity are then given by

"EI"(T() = ABCD(Tl)rlmpruvcd(T() (145)

reTe) = ABCD(Tl)iImpruud(Tt) + AWBCD(TC)rlmpmwd(Tl) (146)
0 ® 0

where w = (— ® 0 0 (147)
0 0 0

When propagating a trajectory based on the Filter corrections the improved polar
motion information is used. For p and q the corrections at t, are used at trajectory
timelines such thatt,<T,<t,,,. For At the same interval applies and the At
correction is converted to a correction to At by multiplying it by T, t,.

Improved initial conditions are computed if required after trajectory propaga-
tion is completed. For each mode of operation the computations are slightly differ-
ent. In all modes the improved inertial position and velocity are obtained by inter-
polating off of the propagated trajectory at the selected times. In the "batch” mode
the ARPy values are added to the nominal radialion pressure parameter values to
get the improved radiation pressure parameter values~the same for all initial
condition times. A similar computation is done for thrust parameters. In the
"Filter" mode both the AK; and ARP; values just before the time for initial condi-
tions are added to the nominal radiation pressure parameter values to get improved
values. A similar computation is done for thrust parameters. In the "Smoother"

N
Y AKpg,
mode the ARPy values and the average AKg values | j=0 are both added

N+1

to the nominal radiation pressure parameter values to get improved values. These
radiation pressure parameter values would normally be used to predict a reference
trajectory for a future span. This is why the average stochastic radiation pressure
corrections are used. The thrust corrections are added to the nominal thrust values
to get improved values. Also the gravity coefficient parameter corrections are added
to their nominal values to get improved values.

SATRACK COVARIANCE MATRIX GENERATION

Special covariance matrices are required for the SATRACK application of the
MSF/S system of programs. These matrices relate 8 parameters (position, velocity,
time offset, and frequency offset) for each satellite to the same parameters for every
satellite at a given tirne ( intersatellite covariances) and at up to three different
}i:ﬁes (intertime covariances). The full covariance matrix required is structured as
ollows:
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8Ngy 8Ngy 8Ngy

L S S W N

; ;
1 L]
Py v P2} Py i 8Ngy
[} [}
....... S (148)
] [}
Psarrack = Py | P2 | Py z 8Nsv
l :
....... LSRR SV
' I
Py i Paz | Pss i 8Nsv
] ]

where the subscripts refer to times T;, T2, and T; and Ngy is the number of satellites.

P;,, Py, and P3; are symmetric submatices and Py; = PJy, P3; = PJ3, and P33 = Pj;.
Each submatrix is further divided into 8 X8 blocks where blocks along the diagonal
relate a satellite to itse!leither at the same time or at two different times. Each 8 X8
block above or below the diagonal blocks in each submatrix relate one satellite to
another satellite either at the same time or at two different times. The diagonal
submatrices P;,, P2, and P33 are computed exactltibut the off-diagonal submatrices
P2, P13, and Py3 are approximated in such & way that they would be exact if the
process noise terms were zero.

Asindicated in Figure 3 in the TIMELINE DEFINITIONS section, the times
of interest T;, T3, and T3 may not be exactly on mini-batch steps. Each T, is

AtRcd. AtRGd.
associated with the mini-batch interval such that T,e{ t; — 5 t,+ 5 ] .

Let R°(T,,), m=1,2,3 denote the R; 'matrices for these mini-batch times. Each
matrix is of dimension Nygr XNy and is upper triangular. For each time T, a
state transition matrix ¢(T,,) is defined as given below. This matrix maps the
parameter corrections at t, into corrections in position, velocity, satellite time offset,
and satellite frequency ofi‘set atT,,.

- -
- - - -
-~ -
- o an -

OEIEO

t A

{
corresponds corresponds corresponds
to Cp to Cys toS

0

¢(T,,.)=<KRE G de RP! T EPMEGC)zstv (149)

Columns are present only for the parameters included in R(T,,).
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3 3
6{ Ke, 0 0
2{ 0 0 0
0 Kg, 0 0
Kr = 9 0 0 (150)
8Ngy X SNgy 0 0 Kg
3
o o o0
.. K
" R’Sv
0 0

G and RP have the same size and structure as Kg

Kg,

G;

RP;

—
—

]

8Ngy X 3Ngy

partials of position and velocity at T,, with respect to stochastic
radiation pressure parameters at t; given by equations (22) and (23) in
the STATE EQUATIONS section with t;,, replaced by T,

partials of position and velocity at T,, with respect to gravitational
acceleration Barameters at t; given by equations (29) and (30) in the
STATE EQUATIONS section with ¢t replaced by T,

partials of position and velocity at t; with reiﬁect to radiation pressure
parameters obtained by interpolating off of the trajectory at T,

o o °£(~3

: = (151)

e © o o
o
e © © o ©
o

=
g .

= 2 i=12,..,Ngy (152)
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6 6
6 { é, 0 O
2{ 0 0 o0
0 ¢, 0 0
b = 0 0 0 (153)
8Ngy X 6Ngy 0 0 ¢"
o o o0
q)"&v
0 0
¢., = partials of position and velocity at T, with respect to orbital elements
obtained by interpolating off of the trajectory at T,
3
6 { T,
2 { 0
0
Ta (154)
T = 0
8Nsy X 3NN TN,
0 0
The rows for each T; are determined by which satellites have thrusts.
T; = partialsof position and velocity at T,, with respect to thrust computed

using equation (79) in the Range Partial Derivatives subsection
except evaluated at T,, and all £ rows are required
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PM =
8Ngy X Npy

GC has the same size and structure as PM

PM; = partials of position and velocity at T,, with respect to polar motion
computed as in equation (80) in the
secticn except evaluated at T,, and #

partials

GC; = partials of position and velocity at T, with respect te gravity
coefficients obtained by interpolating off of the trajectory at T,

The following product matrices are then formed:
(T )R T )
8NsyXNror 8NsyXNror NrorXNyor

S(Tn) =

Then the covariance submatrices of Pssrrack are given as follows:

Py =
Pz =
Py =
P2 =
Py3 =

P33z =

S(T)S(T )
S(T;)S(T2)"
S(T;)S(T3)"
S(T2)S(T2)"
S(T2)S(T3)"
S(T3)S(T3)"

NSWC TR 87-187

Npm

PM,

PM;

PM;

PMy;,

0

(155)

Range Partial Derivatives sub-
replacesr in computing the velocity

(156)

(157)
(158)
(159)
(160)
(161)
(162)

Each is an 8Ngy X 8Ngy matrix where the eight parameters are position, velocity,
satellite time offset, and satellite frequency offset in units of km, km/sec, psec, and
ppm respectively. These matrices are then scaled to be in units of m, m/sec, sec, and

sec/sec.
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APPENDIX A
STATE EQUATION SIMPLIFICATIONS
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The surpose of this appendix is to describe the assumptions and definitions
made in adopting the specialized form of the state equations for the orbit-related
parameters in the MSF/S system. The first simplification involves assumptions
about the white noise sources driving the estimated orbit-related states and affects
the form of the process noise covariance matrix. The second simplification involves
the definition of the pseudoepoch state variables and affects both the state transition
matrices required for the Filter propagation step and the observational equation
partial derivatives required for the Filter measurement update step.

To simplify this discussion, consider the set of state equations for a single satel-
lite that includes current state position and velocity parameters, x', and one stochas-
tic orbit-related parameter, p. The system of stochastic differential equations
describing corrections to these parameters is given by

\ c
8p \ B 0 Sp w
+ [, (A1)
ox' / F, F, Sx' wo
1

where B = — —,i.e.,8pismodeled as a first-order Gauss-Markov
T process (see Appendix B)

ax'

F, = — = partial derivatives of velocity and acceleration with
ap respect top
ax'

F, = — = partial derivatives of velocity and acceleration with

adx'  respect to position and velocity

and it is assumed thet changes in x' cause negligible changes in p. Also each w com-

. N . [ . N . . N
penent is a white noise process. Assume that wy, =0, i.e., there is no white noise driv-

ing thcl:) Sx' states directly. Then the discrete system equivalent to equation (Al) is
given by

Ap M o A w
p - P + 1 (A2)
Ax' Vo, V, Ax' w2
1+1 v j i
(tjv1—-t))
where M = e T (see Appendix B)
ax'(tj41) L .
vy, = Vp(tjss, t) = ——-- = partial dérivatives of position and
ap(t)) velocity at t;,; withrespect top att;
0x'(tj+1) L .
v = Viltjsg t) = = partial derivatives of position and

ax'(t;) velocity at t;, ; with respect to position
and velocity at t;

A-3
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and [ y, e— 1 (3 wi A
= d
w2 V,',(A,tj) V;(A,tj) 0
J i
(A3)
tivs (A—tj)
e T W)C

= ¢ dA
V,',(A,t j) w;
L

Therefore, w; is a non-zero vector as a result of the discretization process even though
the white noise driving the 8x' states in the continuous system is assumed to be zero.
The state equations adopted to simplify the square root information filter/smootaer
algorithms also ignore the w, noise contributions. However, the Ax' states are still
smoothable since they are dynamically related to the Ap state through the v,

matrix. This assumption results in the absence of both a process noise covariance
matrix for the six orgit states and a process noise cross-covariance matrix between
these six states and the stochastic orbit-related states. Since the orbit states are non-
stochastic (not p parameters), a considerable savings in array storage results. Thisis
the case because the information array required for the Filter propagation ste
(equation (111)) includes two rows and columns for each p parameter. This reduction
therefore allows more satellites to be processed simultancously.

Expanding the state equations given in equation (A2) to include all orbit-
related stochastic states, Ap, and orbit-related bias states, Ay, and again assuming
w2 =0, gives the following state equations:

Ap M 0 0 Ap w;
Ax' | = Vo, Vi ¥y Ax + 0 (A4)
Ay 0o o0 I Ay o
Al J
( (tj+1-t) )
where M = diag\e i
Vo, = Vpltjs1,t) = partial derivatives of position and velocity at t;,;
with respect to pat ¢;
Vi = Vitj+1,ty) = partial derivatives of position and velocity at tj+1
with respect to position and velocity at t;
and Vy, = Vytj+1ty) = partial derivatives of position and velocity at i1
with respect toyat t;.

A-4
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The subset of these equations involving the Ax'states is given by

Ax(tjs1) =Vp (441, 1) Bp(L) + Vi (8,4, ) Ax' (t) + V) (L4, t)) Ay(L)) (A5)
Define the pseudoepoch state variables Ax; by

Ax(t) =V.(t, Ty Ax;+V,(t;, To) ANt) (A6)

whereV,(t,Ty) = partial derivatives of position und velocity t t; with respect to
eith%r orbital elements or position and velocity at the trajectory
epoch T,

and V,(t;To) = partial derivatives of position and velocity at t, with respect to
the orbit-related bias parameters at T,.

Substituting for Ax(t;) and Ax'(t;,,) from equation (A6) into equation (A5) results in
the following equation: _

Ve(tis1,To) Axjr 1 +Vy (841, To) Ay (tje )= (A7)
Vp(tjs1,t)) Ap(t) + Vi (841, t)Ve(t;T)AX + Vi(tje 1, tIV,(E,TO)ANL) + Vy (841, t)ANE))

Multiplying both sides of equation (A7) by V;'(t,-+ 1, To) and rearranging terms
results in the following equation:

Axjsr = Vi(tjsn,To) Viltia n,t)V6,TOAX + V5 (41, ToV; (41,8 Ap (1) (A8)
+ Vit 1, T (Vilty e 1tV (81T + Vit 1,8) ) Ay (£) =V, (841, TO)Ay (24 1) ]
Based on the properties of state transition matrices, the following identity exists:
Vit 1,t)Ve(t;,To) =V, (84 1,To) (A9)
Therefore the matrix multiplying A:{rin equation (A8) reduces to an identity matrix.

Also, based on the properties of state transition matrices and Ay(t;, ;)= Ay(t;) from
equation (A4), the following identity exists:

Vit 1,8))Vy(t;,T0) + Viltis 1,t)] AWE) =V, (84 1,TO) AN 4 1) (A10)
Therefore the last term in equation (A8) vanishes and equation (A8) reduces to:
Axjy; = Ax+ V:(tju.To)V,', (tj+1,t)Ap(t)) (A11)
= Ax;+V,Ap(t)
where V, = V(s 1,ToVp(tisnt) (A12)
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Therefore the state equations given by equation (A4) and the pseudoepoch state
variables definition given by equation (A6) result in the following simplified state
equations for orbit-related parameters:

Ap M 0 0 Ap w;
Ax | = V, 1 0 Ax + 0 (A13)
Ay 0 0 1 Ay 0

I+l J

To be consistent with these equations, the observational equation partial
derivatives required in the Filter measurement update step must be oomquted with
respect to these variables. For a given observation at time t,,,, the partials with
respect to the orbit-related p parameters involve the V} (t,s,, t;) matrix, the partials
with respect to the pseudoepoch state orbit parameters involve the V, (t.s,, To)
matrix, and the partials with respect to the orbit-related bias parameters involve the
V, (tons To) matrix.

A-6
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APPENDIX B
FIRST-ORDER GAUSS-MARKOV PROCESSES
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The stochastic differential equation defining a continuous first-order Gauss-
Markov process is given by

8 = —lsp+w (B1)
T

where t cecorrelation time (seconds)

w white Gaussian noise of mean zero and spectral density q, i.e., E(w)=0

and E{w(t)w(s)] =qb(t —3).

The continuous linear variance differential equation corresponding to this stochastic
process is given by

5 = -2 gt4q (B2)
T

Setting the variance rate, ¢*, to zero and solving for o* gives the steady-state variance
for this random process as

o' = E(Bp(tF) = —q (B3)

N -

Also the mean value, p, of this process is zero, i.e.,

n = E@pt)) = 0 (B4)
The one-sided power spectral density for a Gauss-Markov process is given by
2
o) = B (B5)
W'+
where B = L and w = 2nf.
L’
Its corresponding autocorrelation function is given by
d(t) = o'e~Bl! (B6)

A Gauss-Markov process is used to approximate a band-limited process with a flat
spectral density over this bandwidth.

The discrete equivalent of this continuous process is given by the first-order
stochastic difference equation

Apj+1 = ddpjtw; (B7)
where ¢ = state transition matrix
{w} = white Gaussian noise sequence of mean zero and variance Q, i.e.,

E(w;)=0 and E(w,w;) =Q8(j-k).

B-3
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¢ satisfies the following differential equation and initial condition:

b = --o
¢(tt) =1
The solution to this differential equation is simply
(tje1—t) At
p=e T - T

The process noise variance, Q, is then given by

41 tiv 201—9')
e = X dA,t)ad"(\t)dd = q X e U dA
7 t
2AA—t) |tjs: 2At
P “li—e T
= -Q —e = —-1—=
qQ 2 q 2 e
tj /
2At

= of \l—e X

(B8)

(B9)

(B10)

(B11)

For v=w, the stochastic differential equation (B1) reduces to thdt for a random

walk process, i.e.,
S.p =w
The discrete equivalent is then given by
Apj+; = Api+w;
For this case Q is derived starting with equation (B11) as follows:

2At

X o=t

Q =1lim gq-— l—e v
To® 2

2
2At)
2At T

1=l1- =0 ¢ 2.

q lim

T

o |
[
(Y

B-4
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(B14)
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=q lim (AH» 5 condmt.—(—l)>
> i=1 T

= qAt

If, in addition, q=0, then the stochastic differential equation (B12) reduces to that
for a random constant, i.e.,

8 =0 (B15)
The discrete equivalent is then given by
Ap_,-“ = Apj (BIG)
and Q =0 (B17)
B-5
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APPENDIXC

APPROXIMATION OF PARTIAL
DERIVATIVES OF POSITION AND VELOCITY
WITH RESPECT TO STOCHASTIC ORBIT-RELATED STATES
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The partial derivatives of position and velocity at ¢t with respect to the stochas-
tic radiation pressure and gravitational acceleration parameters at ¢t; are approxi-
mated using a Taylor series expansion method. These partials only Rave to
accurate for values of tst,, , i.e., for a time span of at most one mini-batch interval
(usually < 1 hour). Using p to designate the stochastic parameters (either Ky or G)
and r and  to designate position and velocity respectively, the system of differential
equations defining the corrections to the parameters (with the stochastic terms set to
zero) used to derive the state transition matrix containing the required partial
derivatives is given by

8p B 0 0 Sp
& |=1 0 o0 I & (C1)
S F, G o &
where B = diag[~ —: i.e, each eom&onent of 8pis modeled as an
i / independent auu-hhriov process
(see Appendix B)
o
F, = P = partial derivatives of acceleration with respect to p
P
e
and G .= P = partial derivatives of acceleration with respect tor

It is assumed that changes in r and # cause negligible changes in pand that
i\)«:fe_lerat.ion is not a function of velocity.
1ne

B 0
Foo= ( ) (c2)
Fg Fy
0
( ) (C3)
Fy
0 1
( ) (4
G 0

The state transition matrix, ¢it,t)), is the solution of the following system of
differential equations and initial conditions:

dt,t) = FO)P(t,t) (C5)
d(tit) =1 (C6)

]

where Fy

and F3
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Approximating ¢(t,t,) by a second-order Taylor series about t, and assuming F=0,
i.e., F is constant for short time intervals, results in the following:

e (t —tl).
. (t—-t)y
= I+ F(tj)(h(tl,tj)(t - tJ) + F(tjmtj,tj) + ﬂtl)HtJ)“tj,tJ) ]
(t=¢)
= I+ F(t}t—t)+Fi(t) 3
B 0
where  F(t) = . (C8)
Fy(t)Fg(t)+ Fx(t)B  Fy(t;)
Partiiioning ¢ the same way that F was partitioned in equation (C2) gives
$i(t,t)) 0
ety = (C9)
Then (t—t)
$i(t,t) = I+B(t—t)+B (C10)

However, in the limit as the nun}ber o)f terms increases, the right-hand side of this
t—t;

expression converges todiagle” 1, )sono approximation is necessary. Also,

(t-¢»

da(t,t)) % I+Fylt;(t—t)+ Fa(t) (C11)

This approximation is also not required since ¢,(t, t;) is just the partials of position
and velocity at t with respect to position and velocity at t;, which can be obtained
exactly by proper manipulation of partials interpolated offof the trajectory.

There ;re. the only submatrix of ¢(t,t;) requiring approximation is ¢(t,t;)) and it is
given by

(t—t)»
2

0 Fi(t)) 0 (t=t)
= (t—t)+ + —
Fl(tj) 0 F](tj)B 2

C-4

(C12)

bt t) = Fz(tj)(t -t)+ (Fa(t_,)ﬁ'z(tj) + Fg(t_,)B)
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Therefore
Mtj) (t-—- tj)‘
_— = F )(tj) _— (C13)
oplt;) 2
a(t)) (t—=t,)
and —— & Fi(t;Nt—t)+F(t)B (C14)
apl(t))
. ax(t,)
For the radiation pressure (Kg) parameters, F;(t))= is computed as
follows: aKg(t;)
Kg,a;+Kg, 10" shape cos Kg,
Nt) = R, Kg, 10 shape sin Kg, (C15)
KR,G:
) a, 10™shape cos Kp, —Kg, 10 shape sin Kg,
t .
= R, | 0  10“shapesinKg,  Kg 10" shape cos Kg, (C16)
axg(tj) -
a, 0 0
where R, = matrix required to transform between the body-axis and inertial
Cartesian reference systems obtained from the trajectory at ¢;
a;—Kg 10" shape cos K a,
a: = B s , a = — (C17)
KR, Kp,

= inertial accelerations due to the radiation pressure model only and not
- including y-axis and Kg, contributions, given in the body-axis x and z
directions respectively at ¢,.

inertial acceleration at t, due to radiation pressure in the body-axis
directions obtained from the trajectory

N
n

Kr = nominal radiation pressure parameter values from the trajectory

shape = fraction of the sun’s disk unobstructed by any eclipsing body (Earth,
Moon, or both) obtained from the trajectory at t;
ant)
For the gravitational acceleration (G) parameters, F;(t))= is computed
as follows: t)
Ht) = RpacG (C18)

C-5
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aG(t,)

where Rgpac
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Rrac

/. FXV XV )
F —Xpr T

( Irx v rx v
matrix required to transform between the RAC and inertial
Cartesian reference frames at ¢;

roution and velocity at ¢, interpolated off of the trajectory
* denotes a unit vector)

C6

(C19)

(C20)
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APPENDIX D
CLOCK MODELS
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The current state satellite clock offsets are modeled as a third-order linear
system with white noise inputs given by the following stochastic differential
equaticns:

8% /’o o 6\ /& w)
& | =1 90 o & |+ [ wi (D1)
8¢/ \o 10 8¢ wj
where & = frequencydrifi
& = frequency offset
&¢ =  time ofiset
w!! =  white noise process of mean zero and spectral density g, i.e.,

E(w!(t))=0 and E(w}(t)w}(s))=q;6(t-3),i=1,2,3

'The discrete eguivalent of this continuous model is given by

/A.‘i 1 0 9 AY W)
A = At 1 0 Ar |+ wh (D2)
At ‘ ,
At — At 1 \ Ac w3
i+l 2 v i
where At = iy -t (D3)
{wj}; = white noise vector sequence of mean zero and covariance
matrix @ derived as follows: '
At A?
0 0 0 0 1 A =
/ Q 2
Q =z A 1 0 0 q O 0 1 A dA (D4)
Aﬂ
— X 1 0 0 0 0 1
0 2 az/
Lt N A
q q a 2
2 A
= QA QA +qe QI;+Q2A dA
A? A by
— . 4qzA =+ qah +
0 q 2 U 2 qz q p q: qQ
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At* At’
q:At qQ— qQr—
! 2 s
At At’ At At
= a— Q— + q2At a— + a@ —
2 2
At At At At t’
- —+ _ — + qa— + q3At
q 5 q 3 Q2 2 q 20 q2 Q3

In terms of the pseudoepoch state clock offsets actually implemented in the
MSF/S system, the model is given by

A.t.o A.t.o w;
Ay = Az + w2 (D5)
Alo AI() w3

J+1 J J

where the subscript 0 denotes a correspondence with the fit span epoch, t,, and

{w;} = white noise vector sequence of mean zero and covariance matrix Qo derived
from Q as follows: ‘
A.t.a A.t. Wi ' 1 0 0
Let Ay = Ay , Ar= A: , W= wa ,and ¢J' = ti—-ty 1 0
. (t;—tp)
Ar A: w3 —15—0 i—ty 1
Then Ay = @js18%,, = djs1ln, + dji1 W, (D6)

The state transition matrix in equation (D2) is equivalent to ¢, q>;’ so that
equation (D2) can be rewritten as

Atyr = Gu1djAy + W) (D7)
Combining equations (D6) and (D7) results in the following equality:
Qi1 Br+ &ye1 W = Qu1djdy + W) (D8)
Multiplying each side by its transpose gives
¢+ 181y, Aty &js1 + jv1 Wi W) i1+ djss Aty w;j HPR YR Y AToT i1 = (D9)
;+19 87 AT &1 +w," + 44 10AT; W] Wi AT G

D-4
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Taking expected values and replacing
E(Ary, Avy) by Py,
E(w;wj) by Qq,
E(At, wj) , E(w;Ary), E(Ar, wi'), and E(w; A7) byo,
E(A7 A7) by P,
and  E(wjw") by Q gives
@j+1Pg &j+1+0j+1Q0, &j+1 = 41 &/Pid" &j+1+Q (D10}

Multiplying each side of this equation on the left by ¢;,; and on the right by$;’; and
substituting Py for ¢;'P;¢jgives

Po,+Qo, = Po+ ¢/+1Q & (D11)

Therefore Qo = §j41Q b+ (D12)

J

The square root of Q‘,jj is actually required by the Filter algorithm. The upper
triangular square root, R, of Q" such that

Q'=R'R or Q=R'RT (D13)
is first computed using Cholesky decomposition (see Appendix E). Then combiring
equations (D12) and (%13) gives

Qu, = &j+1R' R™ )4 (D14)
Inverting gives

Qs, = &j+1R" R+, (D15)

Therefore the square root of Q, isjust R ¢,.+; where R is invariant (a function of At
oniy) and ¢;,; is lower trianﬁu‘lar. The product R$; ., is a full matrix and must be

upper triangularized using Householder transformations (see Appendix G) before

being used in the propagation array.

To be consistent with the clock model states as given in equation (D5), the
observational partial derivatives required in the Filter measurement u%date step
must be computed with respect to these pseudoepoch state parameters. For a given
observation at time t,,,, the partials must therefore involve the third row of the ¢,
matrix with t; replaced by t,,,. .
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The current state station clock offsets are modeled as a second-order linear
system with white noise inputs, i.e., the same as the satellite clock model except that
a_l 8':‘-1:1ated terms are absent. For the discrete version of this model the Q matrix is
given by

A At

t —

qi Q 2

Q = AY At’ (D16)
017 qI—3—+Q2M

where q; = white noise spectral density for the continuous frequency offset state, 8¢
and q;= white noise spectral density for the continuous time offset state, 8.

The ¢; matrix is given by

1 0
¢ = < ) (D17)
ti—-tp 1

With these definitions, all of the discussion of the satellite clock model above applies
to the station clock model also.

Assuming thatq; =0 for the satellite clock model, i.e., frequency drift is
modeled as a random constant over the entire fit span, the model for the frequency
offset state, Ai, is equivalent to a constant plus the integral of the frequency drift
state, At, plus the integral of white noise. The model for the time offset state, A, is
then equivalent to a constant plus the integral of the frequency offset state, A¢, plus
the integral of white noise. Therefore, the noise terms integrated in determining the
time offset state are integrated white noise (random walk frequency noise) and white
frequency noise.

The spectral densities of these noise terms can be directly related to the Allan
veriance which is used to characterize the statistical frequency fluctuations of

atomic and crystal clocks. The Allan variance,o;(:), is defined by

oW = > Ekei)=Fu] (D18)
tyts
where $;(:) = L y(t)dt = average fractional frequency over : seconds (D19)
T .
and y(t) = j;(:) = instantaneous fractional frequency (D20)
0

= rate of change of phase ¢ divided by 2n times the
nominal frequency vy.
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The Allan variance corresponding to the model with q; =0 is given by the sum of the
individual Allan variances for each noise source as follows:

oy = B L= (D21)
y T 3

The first term corresponds to the white frequency noise and the second term
corresponds to the random walk frequency noise. This is depicted in Figure D1,
which is a typical plot of the square root of the Allan variance. Flicker noise, which
corresponds to a horizontal line on this plot, cannot be represented exactly by this
model. However, the white noise term (with spectral density q3) can be chosen to
exactly match the left-hand portion of a theoretical Allan variance curve. Then the
qz spectral density can be selected optimally so that the minimum point of the
combined curve lies on the flicker noise portion of the theoretical curve.

10-11 ]
2 q3 qat
o)) = — + — ,q,=0
/ T 3
102 — WHITE NOISE \
RANDOM WALK NOISE
Uy(t)
10 — = — - < FLICKER
NOISE

10" T 1 T T

10° 10° 10° 10° 10°

AVERAGING TIME : (SECONDS)

FIGURE D1. CORRESPONDENCE BETWEEN CLOCK MODEL SPECTRAL DENSITIES
AND ALLAN VARIANCE
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APPENDIX E
CHOLESKY DECOMPOSITION

E-1




NSWC TR 87-187

Lower triangular Cholesky decomposition is used to compute the square root of
the inverse of the process noise covariance matrix, Q, for each clock model, i.e., Q' is
factored into the form RR where R is upper triangular. The algorithm actually com-
gutes a lower triangular matrix L=R",i.e., Q" =LL". Let q:£Q(nXn) and

;i EL(nXn),n=20r 3. Then L is computed as follows startiag with j=1:

For column j define
6 = @) | (E1)
If j=n, the procedure is complete.

Otherwise, for each subsequent row k define

C.J = q”‘/fj‘,' = j+1l.,n (E2)
This completes the definition of this column of L and the Q" matrix is then
adjusted as follows:

For all subsequent columns and all subsequent rows define
Ar = q.',,.—f.-.,fu k= j+1.,n i = k..,n (E3)

Then go to the next column, j+ 1, and repeat this procedure.
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APPENDIX F

WHITENING AND DECORRELATION OF RANGE
DIFFERENCE OBSERVATIONS
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Range difference observations are derived by one of two measurement tech-
niques, both of which result in pairwise correlated observations. The first technique
involves differencing two consecutive accumulated Doppler counts provided that the
count was continuous, i.e., no losses of lock or cycle slips occurred during this inter-
val. The second technique involves differencing two consecutive pseudorange meas-
urements. In either case, two consecutive range difference observations (assuming
no losses of lock or cycle slips for the Doppler-derived type) have one measurement in
common and are therefore correlated.

Let RD represent a measurement-noise-free range difference observation and
let ADR represent a noise-free Doppler count type measurement or pseudorange
measurement. Then from three consecutive ADR measurements, two RD
observations can be derived as follows:

RD;+v} = (ADR; +V.I' ) - (ADRO+V8) (Fl)

RDz+vz = (ADRg+v3) — (ADR;+v}) (F2)
where v| represents the zero mean white measurement noise of varianceo:m‘ on the
ADR measurements and v; represents the resulting zero mean measurement noise on
the RD observations. The RD observation measurement noise variances are derived
by s?uaring each side of equations (F1) and (F2) and taking expected values to get
the following:

orp, = E(vi)= E(v{)+ EW)= oapr, + Oang, (F3)

orp, = E(vi)= E{)+ E(vi)= oapr,+ Oapa, (F4)

The measurement noise covariance is derived by multilplying equation (F2) by
equation (F1) and taking expected values to get the following:

orp,rD, = E(Viv)) = —E(V}) = —0apg, (F5)
Then the correlation coefficient is given by

2
_  ORrDp,RD, _ CADR,
PRD,RD, = ——™ = — ———

2 2
(o&D, OrD,)* ORD, ORD,

(F6)

Let o,=0gp and p;=prop rp,,,- Then the measurement noise covariance matrix,
P, , for a sequence of m pairwise correlated range difference observations is given by

o1 P10;:93 0
2
P10102 a2 9202({."3 0
2 e
P, = 0 P20303 g.. e Sl 0
e e 2 e, -
.............. Om-1 Pm-10m—-10m

0

\
Pm-10m-10pm Om
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The corresponding linear measurement model for these m observations is given by
= Aldx+v (¥8)

where E(v') = 0 and E(v' v'T) = P,,. To whiten and decorrelate these observations,
i.e., to transform the observations into an equivalent set of independent observations
each with unit variance, do the following:

Factor P, into the form LL" where L is a lower triangular matrix. Then transform
the linear measurement model given by equation (F8) by multiplying each side by L"
to get

L'z = L'AAx+L'v (F9)
or z = AAx+v (F10)
where E(v) = E(L'v') = L'E(v)=0 (F11)
and E(w') = E(L'v'v'TL7) (F12)
= L'E(vw'T)LT
= LIP,LT
= L'LLTLT
=1

Therefore equation (F10) is the linear measurement model for the equivalent set of
uncorrelated, unit variance observations required for the Filter measurement
update step.

¢ The banded tridiagonal matrix, P,, has a lower triangular square root, L, of the
orm

8,
p: B2 0
P2 O3 (F13)

=~
Il

P

Then P, is also given by
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3, 0, b1 0
81 O+Pr OGPy 0
0 03Pz Os+Pr -

(F14)
P”o =LLT= ‘
o T Oma+ Bma Omiabmei
um-lpm-l n:l+ p:l-l
Equating terms between the matrices given in equations (F14) and (F7) gives
§; = o
P10:0
3i1p1 = p1ojo2 » P = b
G;
G:+Pr =03 - 8 = (oz—pn’
(F15)
P20203
8aP2 = psg0303 = P2 = -
O3
53+Ps = 05 -~ O = (o3—pa)’
or, in general,
PaOn0On+1
Pn =
au n= l’ 2’ ety M‘I (F16)
83,=o0

- 2
Op+r = (0:4—1 -pn) ¢

The L matrix is not actually computed but the transformation given by equation
(F9) is done recursively as follows:

Let ¢’ represent z', v', or any column of A'. Then ¢'=Lecisgiven by

C} 01 C;
c3 P Bs 0 C2
o | = B O s (F17)
c;.. 0 ° pm-l“‘ Bn c:..




NSWC TR 87-187

Individual equations are then given by

¢ = 8¢

cg = Pic; + B3c;
cy = Pscs + 833
Cm = DPmiCma + Gucn

Solving those equations recursively for the ¢;’s then gives

c; = ¢;/%;

cg = (ch—~pPic))/8;

c3 = (cy—pscs)/B;

;'m = (ch “p;hlcm-l)/ Om

(F18)

(F19)
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APPENDIX G
HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS
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This appendix is not intended to qr{vide a detailed explanstion of Householder
transformations and their properties. The readeris re to Chapter IV of refer-
ence 4 for this }ﬁl‘maﬁon. However, two es of these tions ex-
ploited in the /S implementation will E:o scussed beloxww. Firstit will be shown
that the transformation defined by equations (105-110) in the MEASUREMENT
UPDATE subsection of the FILTER ALGORITHM section does zero out the below
diagonal elements in the first column of the arbitrary m Xn matrix R.

For the first column, equation (109) gives

1 r
— R(1,1)—s\ R(i,1)

= o [ ReD
: (G1)
R(."hl)
1
= — i,1)if —sR(1,1
- (IRG, D} - sR(1,1))

Squaring equation (105) gives
st = |R(G,D (G2)
Substituting equation (G2) in (G1) gives

1 1
i = —— (s*=sr(1,1))= —(s—=R(1,1)) (G3)
(1) u(l)

Substituting in equation (G3) for u(1) from equation (106) gives

s—R(1,1)
= -1 (G4)

1 —

R(1,1)-s
Therefore for j= 1, equation (110) gives

R(1,1)—~s s
R(2,1) 0
R(m.l) 0

Two properties of Householder orthoﬁnal transformations are exploited to
ret}uﬁe the number of computations in the MSF/S implementation. These are given
as follows:

1. If the current column being zeroed out below the diagonal has a zero ele-
ment, the corresponding row for all remaining columns is unchanged by this trans-
formation. u(i)=0 for this row in equation (110) so that R(i,/) for all columns jdoes
not change. This property allows the Householder transformations required for the
measurement update to be done in two stages (equations (103) and (104)) and saves

G-3
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over N, X (N, + N,) words of array storage. Since the R, array is always upper trian-
gular, this property allows it to be stored and operated on as a one-dimensional array
in equation (104). The Filter propagation step computations are also reduced by
applying this property. In equation (111) the matrix —R,M is always upper trian-
gular so that only the highest row being operated on in the first N, rows changes as
each column is zeroed below the diagonal.

2. If any column being transformed has zero entries corresponding to all non-
zero entries in the current column being zeroed out below the diagonal, this entire
column is unchanged by this transformation. y; = 0 for this column in equa-
tion (110) so that R(i,j) for all rows i does not change. This property is applied as
described under equation (111) in the PROPAGATION subsection of the FILTER
ALGORITHM section. The Gauss-Markov p parameters were placed first in the list
of stochastic parameters in order to take maximum advantage of this property.
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APPENDIX H
SRIF AND EQUIVALENCE TO KALMAN FILTER
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The square root information filter (SRIF) measurement update equations (equa-
tions (103) and (104)) correspon linf to the parameter set partitioning implemented in
the MSF/S system are derived in reference 4, section VI1.2 and are fiven there by equa-
tions (2.6) and (2.7). The SRIF provagaiion equations (equation (111)) are derived in
reference 4, section VIL.3 and are given there in a more general form by equation (3.6)
repeated here as

-R,M R, 0 0 z, R; Rp, Rp: Ry 23
kxp_ va’, o Rz kx‘y—' ﬁxv_y i‘ 0 ﬁ:p kz Rzy 2‘
where R,.= R,,V; and R, = R, V; (H2)

These equaticns reduce to that used in the MSF/S system with the following
simplifications:

z, = 0 (H3)
i.e., no a priori knowledge of process noise exists except for its covariance matrix,

v, = 0 (H4)
and V, = I (H5)

because of the pseudoepoch state variable definitions (see Appendices A and D), and
R, = 0 (H6)

hecause the measurement update Householder transformation is applied even if no
observations are present in a given mini-batch interval.

An alternate derivation of the propagation equations can be obtained by
substituting partitioned ¢ and G matrices into the general propagation algorithm given
by equation (2.29) in reference 4, section V1.2 and rearranging the result as follows:

N The general form of the state equations is given by equation (1) and repeated
ere as

AIJ'.'-} = QJ AIJ’ + ij (H7)
The MSF/S state equations correspond to this form under the following definitions:
Ap
Ax; = | Ax (H8)
Ay /;

H-3
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o =| Vv, I 0 )N, (H9)
o o 1/ )N,
I'\} Np

G =| 0 (H10)
0

The general form of the informaticn array being transformed in the propagation step is
given by the following, taken from reference 4, equation (2.29), with z,(j) = 0:

R.(j) 0 0
LY -1 A -1 a (Hll)
-R;$;G Ri$; 3z
This is equivalent to the data equations given by
—R,; §;Gw; + Rig;Ax; = 2;—V, (H13)

For the partitioning done in the MSF/S system f!,» and z; are given by
Ry R R\
0 R, R, (H14)

R, =
0o o0 R,/
z,)

3 = | & (H15)
%),

Inverting both sides of equation (H9) gives

M 0 0
& = [-VoM' I 0 (H16)
0 0 I

Then R, ¢, and —R,$,G are given by

ﬁpM" _kvaPM.' kpx ﬁpy
R, = —R,V M R, R, (H17)
0 0 R,/
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—(R,M" =R, VM)
—Rpc = RV, M (H18)
0 J
Substituting equations (H15), (H17), and (H18) into equation (H13) gives
— (R, Mt — Ry V M)+ (R M = Ry V), MDA 4 1+ Rpy AXja 1+ Ry Ay 1 = 2~ ¥, (H19)
R.V,M'wj— R, V,M’ Apj+1+R: Axjsi+RyAy ) = 2, ~ ¥, (H20)
R Ay =12,— ¥, (H21)
Solving the state equations for w, gives
w;= —MAp;+Ap;,; (H22)
Multiplying each side of equation (H22) by R,(j) gives
R,(j)w;= =R, (j))MAp;+ R.(j)Ap;+ (H23)
Ignoring equation (H21), since y parameters do not change in the propagation step, and

substituting equation (H23) into equation (H12) and equation (H22) into equations
(H19) and (H20) gives

—Ru{j)MAp;+ Ru(i)Ap;+1 = —w, (H24)
(R, — Ry V,)Ap; +Rps, Axjer +Ryy Ayjer = 2, -V (H25)
—-R,v, Ap +R;, Axer +Ryy Ayjei = 3 -V (H26)

This is a set of data equations for the states Apj, Apj+1, Ax;+ 1, and Ay, 44, and corresponds
to the {)nformat.ion array required for the propagation step in the MSF/S irnplementation
g’ven by

~ -

R,—R,¥, 0 R, R, 1, (H27)

— szp 0 kx kxy ix J
The Householder transformation, T,, operating on this matrix eliminates Ap; from the
last N,+ N, rows.

The SRIF algorithm is mathematically equivalent to the standard Kalmar filter
algorithm. Assume a set of state equations given by equation (1) (repeated above as

equation (H7)) and a linear measurement model given by equation (2) and repeated here
as

zj= AAx,+v (H28)
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Then this equivalence will be shown for each filter processing step-measurement
update and propagation.

Measurement Update

The Kalman filter measuremen update equations are given by

Ax, = Ax,+K|(z,~A,Ax) (H29)
B, = (U~KA)B, = (B'+AA) (H30)
K, = BA(ABA+1)=5 A, (H31)

where ~indicates a predi¢ted quantity and * indicates a filter estimated quantity. A
different expression for Ax, can be derived by substituting for K, from equation (H31)
into equation (H29) and using equation (H30) to give
A‘x,- = &IJ + ‘3] A';(Zj —_ A.,'ATIJ)
= (I— P, A A)Sx; + PjA;z,
. e T - r (H32)
= PJ[( Pj— AJAJ‘) ij+ AJ'ZJ]
= P;(B,Ax+ A, z2)

The SRIF measurement update equations are given in non-partitioned form by

R, z R, 2
#{ T)= (7 (H33)
AJ Zj 0 8_,

Premultiply each side by its transpose to get

B A\ . /& 1 B o R, 3
.| T =, ., (H34)
Z g A 2 z, 0 e
Since T ‘s orthogonal, T"T =1 so equation (H34) reduces to
RR+ A A Rjz,+ Az RR, R Z
r r T r = aT A AT a T (H35)
LR+ A, {E+ z;2 ZR;, 12;7,+e6
Equating upper left terms gives
RR + AA = RiR, (H36)
Inverting both sides gives
RIR = (RRj+AA)" (H37)
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Subtituting P=R'R7in equation (H37) then gives

B, = (B}'+ AjA)’ (H38)
which is the same as equation (H30) above.
Equating upper right terms in equation (H35) gives

RI+ Az, =Rz, (H39)
Mulitplying z = RAxby R" on each side gives |

R’z = R'RAx (H40)
Substituting equation (H40) into equation (H39) for terms involving ~and * gives

R R,Ax; + Ajz; = R,R;Ax, (H41)
Since P=R'RT, P'=R"R so that equation (H41) becomes

Bj&x, + Ajz, = BjAx, (H42)
'Multiplying each side by P; and rzgrouping terms then gives

Ax;= B; (B;Ax;+ A"z) (H43)
which is the same as equation (H32) above.

Propagation
The Kalman filter propagation equations are given by

&Ij...] = ¢j&lj (H44)
Bie1 = §B4;+GQ,G (H45)

The SRIF propagation equations are given by

No N, 1
RJS) 0 0O RJD Ru) 2. } N
T ) Lll" ) . ) = w wx w w (H46)
—R$;G R, % 0 Ry %) } N
Partition T as follows:
N, N,
7 _ '?u Tie } Nu (Ha?)
Ty T22 } Ng

H-7
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Using these definitions it follows that
Rj+1 = ng kl(b; or ng = R_H[Q,' ﬁ; (H48)
TarRu(j)—T22R;%,G =0  or

" - 4 (H49)
Ta; = Tog Ri®;G R,(j) = R,+1GR,(j)

Also, since T is orthogonal it follows that

TorTar + TasTag =1 (H50)
Substituting for Ty; and T, from equations (H48) and (H49) into equation (H50) gives

I=R;1G Roli) Ru(i) G Ryo1 + Rysrtp, R, R ;B4 (H51)
Pre-multiplying by Rf,, 1 and post-multiplying by R,i 1 gives

R+ 1R 1 = GRu) Ru(j) G+ ¢, R R (H52)
Substituting P = R'R"and Q= R.(j) R.(j) then gives

Be1 = &P, +CQ;G (H53)

which is the same as equation (H45) above.

Also the definitions in equations (H46) and (H47) give

T2, = % (H54)
Substituting for T3, from equ ‘tion (H48) above gives

Riu1d Rz = 2,4, (H55)
Since z = RAx, this becomes

Rj+ 10, R R, Ax; = Rjy10,Ax, = R, L7, (H56)
Multiplying both sides by R}, ; then gives

o 8x; = Ax;4, (H57)

which is the same as equation (H44) above.

H-8
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APPENDIX 1
SRIS AND EQUIVALENCE TO RTS SMOOTHER
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The square root information smoother (SRIS) is implemented using two algo-
rithms in the MSF/S system. The first algorit.hm, called the Staie Only Smoother,
provides state estimates only. The second algorithm, called the Array Smoocther, in
addition provides covariance estimates. Both smoothing algorithms are developed in
reference 4, section X.2 for the general form of the state equations given by eﬁaaﬁon
(H7). For the special form of the state equations defined by equations (H8), (H9), and
(H10), the Array Smoother and State Only Smoother can be derived by the proper
substitutions as follows:

The information array, corresponding to the general form of the state equa-
tions, that is transformed in the SRIS algorithm is given in reference 4, section X.2,
equation 2.7 and is repeated here as

Rw(]) + wa(i)c ﬁwx(l)(b !w

2

(I1)
R:(t;+ )G R+ )d;  2:(t4))
The data e% ation saved for smoothing in the general case based on reference 4,
section V1.2, equation 2.29 is given by
ﬁw(j)wj + kwx(i)ij+l = iu.!_, - 910_, (12)

The corresponding data equation saved for smoothing in thec MSF/S propagation step
is given by

Ry(t)Ap; + Rpp(tj)Ap;as + Rp(t)Ax,; + Ry\(t)AWy = E, -V, (I3)
From the state equatiuns it follows that

Ap+1 = MAp; + w, or Ap; = M'Ap,,; - M'w, (14)
Substituting for Ap; in equation (I3) above gives
— Ry IM'w, + (Ry(t)M' + Rpp(t))Ap;+1 + Rpu(t)Axj0r + Rpy(t)Ayn = 2, -9,  (I5)

Comparing terras between equations (I5) and (12) gives

R.(j) = -Ry(t)M" (16)

Ru:i) = (Ry()M' + Ryi(t)) Rpu(t) Rpy(t)) an
Therefore

RuD+R(DG = =Ry (t)M'+ R (t)M' +R,,(t) = Ry(t) (I8)

Ru:(Nd; = (Ryt) +Ryp(t)M+ Rou(t)V, Rnl(t) Ry(t)) (I19)

¥, =1, (110)
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Also
Ry(tja 1) Rps(t,v1) RL(t,4)) I Ry(t; )
R (t;+1)G = 0  Rit+1) Ryj(44)) 0 = 0 (I11)
0 0 RY(t,41) 0 0
Ryt Ralte) Rp(te\ /M 0 0
Ryt + )9, = 0  Riti.1) R(t4y) Vo, | 0
0 0 R}t 0o 0 I
(112)
Rp(t;s )M + Ry(t,4 )V, Rp(1)  Rp(t,4))
= R3(t,4 )V, Rit,e1)  Ry(tiy))
0 0 RY(tj+ 1)
and (L 1)
2ty g) = 2t 1) (I13)
5(t+1)
Substituting equations (I8) through (I113) into equation (I1) gives the smoothing
array for the MSF/S implementation as
/ Rpp(t)  Ryt) + Ry(t)M + Rpu(t)V, Rult) R,,(t) z,
Ry(tj+)) Ryt e DM + Rp(t,4 0V, Ru(tinn) Ryt 23(t4)) 114)
0 R (tj+ DV, Ritiv1)  Ry(t,e))  z3(tey)
0 0 0 Ry(t)1)  z3(tjsy)

Also Rj(t;) = R,(ty) and z}(t;) = Z,(ty) for all j = 0, 1, ..., N where R,(ty) is upper
triangular. These last N, rows are therefore not carried in the smoothing compu-
tations. The matrices R,(t), R3(t,+,), and R}(t,, ) are always upper triangular. The
Householder transformation, T;,,, operating on this matrix eliminates Ap; ;. from
the last N, + N, + N, rows.

The State Only Smoother algorithm corresponding to the general form of the
state equations is given in reference 4, section X.2, equations (2.1) and (2.2) and is
repeated he: : as

Axy = Ryin (115)

w = [RUDV(ZAD-Rud DAL D)
, j = N-1, N-2,...,0 (116)
Ax; = ¢;(Ax),;-GWw)
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Solving equation (13) for Ap/by setting ¥, =0 gives
Ap = [Ry(tp) (2, ~ Roplt)AR} 1 - Ro(t)ARS - Rpy(t)AYA) (17

This is the same as equation (114) in the STATE ONLY SMOOTHER subsection of the
SMOOTHER ALGORITHMS section. To derive equation (115) substitute the

partitioned definitions of Ax, ¢;, and G into the second part of equation (116) to get

Ap* M 0 0 Ap’ w'
Art | = [-v,M' 1 0 ax | - [0 (118)
Ay*/; 0 0 1 AyY/ia1 0

Extracting out the portion of equation (I18) involving Ax ' gives

Ax = -V, M'(Ap/s;—w)+Ax),, (119)
From the state equations
Ap/y; = MAp/+w/ or wj = Ap’, ;- MAp/ (120)

Substituting w;into equation (I119) then gi\)es

Axr = -V, M'(MAp))+Ax’
J] P, /] N+ (121)
= ij.H‘VP,APj'

This is the same as equation (115). Therefore equations (I15), (I17), and (I121) give
the State Only Smoother algorithm in the MSF/S system.

The SRIS algorithm is mathematically equivalent to the standard Rauch-
Tung-Striebel (RTS) smoothing algorithm. Assume a set of state equations of the
general form given by equation (H7). Then this equivalence can be shown by proper
manipulation of the smoother information arrays as follows:

The RTS smoother equations are given by

Ax; = Ax;+C(Axy)-Axjy) (I22)
P} = P,+C{P}1-Fji))C)T (1238)
where C, = PoiFa (124)
The SRIS equations are given by
R+ Ru(IG RuaslDd;  Zu(i) RL) Rzl
T = (I25)
R/ G Rivid,  z)4i 0 R} z

I-5




NSWC TR 87-187

Partition T* as follows:

Ny N,

Pl o~

/ T;I T;2 } Nw
T =
K Tél TZ.’Z } Nx

Using these d.finitions it follows that
0 = Ti(R,()+Ru(j)3) +T32R}4iC
R} = TyRu()Y, +T32R]4 10,
Post-multiplying equation (128) by q>;’c gives
R®G = THRu{)G +T3:R} .G
Subtracting equation (127) from equation (129) gives

RI$C = -THRL) or T3 = —R¢,C Ryl

(126)

(127)
(128)

(129)

(130)

Post-multiplying equation (128) by (bfand substituting for T3, from equation (130)

gives
RJ@; = - RJ.¢J,G ﬁl’u(l)ﬁwx(l) + T§2RJ'+)
Solving this for T3, gives

T§2 = R;@II(I'I"Cﬁ;(])ﬁwx(])) Rf‘:”

In reference 4, section X.A it is shown from tlie propagation equations that

&; I+ G R, (DRu(i) = B, Bj4s = C,
Therefore

T3 = R)C;Rj
Since T*is orthogonal it follows that

T3 Tor +T3The =1

Substituting for T2; and T2, from equations (130) and (I34) gives

I = R} &,G Ry()) Ru(j) G &R +R;C, K+ 1R1,C; R}
Pre-multiplyirg by R}"and post-multiplying by R}'Tand replacing
Ru(j) Ru() by §;, R+ 1R+ 1 by P},;,and R R]" by P;gives

P} = ¢,GQ,G 4+ C;P i C)

I-6
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(135)
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In reference 4, section X.A it is also shown that
$,GQ,C; = B;-P; 4;F..0P,
Using the second part of equaticn (I33) in equation (I38) gives
G Ce = B-CidB;
= B,-C;4.C;

Substituting equation (I39) into equation (I37) gives

P, = B;~C;Pjs1 C+C;P4 1 C]
Rearranging terms then gives

P} = 13,'+Cj(Pf+1 ~B,1) C,T
which is the same as equation (123) above.
Also the definitions in equations (I125) and (I126) give

z; = TauZj)+T222}
Substituting for T3; and T3, from equations (130) and (I134) give

Z = -R}$;G Ru(DEA)+RIC; R4 12},
Pre-multiplying by R, and substituting Ax*= R'’z"gives

Ax; = -G Ru(DEu)+CAx)

In reference 4, section X.A it is also shown that

~$;G Ru(DEL) = Bxj- CiAX,;
Substituting this into equation (I44) then gives

Ax;} = Axj+Cj(Ax] -8%41)

which is the same as equation (I122) above.

(I38)

(139)

(140)

(141)

(142)

(143)

(144)

(I45)

(I46)
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APPENDIXJ
INVERSION OF UPPER TRIANGULAR MATRICES
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LetUbea nonsi;xgular upper triangular matrix of dimensionn X ntobe
inverted. In the MSF/S implementation, the lower triangular matrix L=U"is
actually computed to take maximum advantage of existing array storage space. Let
u;jeU and ¢; ;e L, then L is computed as follows:

Define
€1 = Nuy, J1)
For each subsequent row j from j = 2, ..., ndefine
€ = luj (J2)
j-1
ba = - [ X auiy | &y k=1..,j-1 J2)

J-3
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